
Correlations,
Part & Partial Correlations, & 
Multiple Linear Regressions



Correlations



Variance, Covariance, & 
Correlations

● Variance & Covariance
○ Importance in statistical analyses

● Covariance & Correlation
○ Relationship between them
○ Why use one or the other?
○ Both are descriptive statistics

● Even though tests can be run on 
them



Assumptions in Correlations
● Assumptions made in computing 

correlations
○ Ordinal, interval, or ratio
○ Linear relationship*

● Assumptions make in testing correlations
○ Monotonic (or normal for Pearson’s r)
○ Homoscedasic
○ No big outliers



Correlations & Error
● Correlations & Error

○ Correlations separate dispersion into 
variance & covariance

○ But make no assumptions about error
● Viz., where error resides
● Instead, both variables are assumed 

to be equally affected by error



Correlations & Error (cont.)

● Correlations & Error

○ The (unshared) variances of both 
variables comprise the denominator
● (This will be different for linear 

regression models)

r =
Cov (X , Y )
SD(X )SD(Y )



Partial & Semi-Partial 
Correlations
● Correlations describe linear relationships 

between two variables
○ Without consideration of the influence 

of other variables
○ Partial and semipartial correlations 

account for associations with other 
variables



Partial & Semi-Partial 
Correlations (cont.)

● Partial Correlations

○ Partial correlations remove the effect of another 
variable from both of the correlated pair

● Semipartial Correlations

○ Also called “part correlations”
○ Removes the association of an other variables from 

one of the correlated pair
● N.b. that either can remove the effect of several other 

variables from one of the pair

● (Or create even more complex arrangements, like 
canonical correlations)

https://youtu.be/2tUuyWTtPqM


Partial Correlations
● Conceptually, we:

1.Compute correlation between X & Y

2.Subtract from that the ratio of:
● How much total variance is
● and is not explained
● by the correlations between between 

X & Z and between Y & Z



Partial Correlations (cont.)

● To wit:

○ So, compute the correlation between X & Y
○ Remove correlations with Z
○ Divide by variance unexplained by the 

correlations between X & Z and
between Y & Z

r xy , z=
r xy−(r xz ×r yz )

√(1−r xz
2 )×(1−r yz

2 )



Semipartial Correlations
● Computationally very similar to a partial 

correlation
○ Differs only in the denominator:

○ Where we only divide it by the variance 
unexplained in X & Z

r y (x⋅z )=
r xy−(r xz×r yz)

√1−r xz
2



Linear Regressions



Linear Models
● Very commonly used in inferential statistics
● Simplest form is Y = bX, where:

○ Y = Output / response / criterion / DV
○ X = Input  / predictor / IV
○ b = Slope of X

● If data are standardized to a normal distribution, 
then convention has us use  instead of β b



Linear Models (cont.)

● Very commonly used in inferential statistics
● Simplest form is Y = bX
● However, we typically add at least two other 

terms: Y = b0 + b1X + e

○ Y = Response / criterion / DV
○ X = Predictor / IV
○ b0 = y-Axis intercept

○ b1 = Slope of X

○ e = Error

The typical null 
hypothesis (H0) of
“no effect” is 
expressed here as: 
b1 = 0

.



● Recall for a correlation:

○ The (unshared) variances of both 
variables comprise the denominator

○ This is equivalent to simply drawing a 
line of “best fit” through the data
● Without worrying about orientation

r =
Cov (X , Y )
SD(X )SD(Y )

Linear Models vs. Correlations        



Linear Models vs. Correlations (cont.)

r =
Cov (X , Y )
SD(X )SD(Y )



● For a linear regression, we instead 
minimize variance in only one variable
○ Typically the criterion (outcome)
○ This assumes that all unexplained 

variance (error) resides in the criterion
● So, in Y = b0 + b1X + e:

b1=
Cov (X , Y )
(SD(Y ))2

Linear Models vs. Correlations (cont.)



● This also means that b1 is expressed in units of X 
per Y:

● If we standardize both variables, then the units 
are the same
○ (In fact, they are removed)

● And b1 becomes equivalent to the correlation

○ (And is conventionally expressed as β1 instead of b1)

b1=
Cov (X , Y )
SD(Y )SD(Y )

Linear Models vs. Correlations (cont.)



Linear Models vs. Correlations (cont.)

b1=
Cov (X , Y )
(SD(Y ))2



Linear Models vs. Correlations (cont.)

b1=
Cov (X , Y )
(SD(Y ))2

Note different units 
in axes



Linear Models vs. Correlations (cont.)

b1=
Cov (X , Y )
(SD(Y ))2



Linear Models vs. Correlations (final)

r =
Cov (X , Y )
SD(X )SD(Y )

!



Linear Models (cont.)

● Y = b0 + b1X1 + e

● Note:
○ Error is separated out

● And placed on the side with the predictor

● Implications:
○ The value of X per se is without error

● Because error is separated out (as e)
○ The intercept, slope, & error can be estimated 

separately
● And their covariances with Y are thus separated



Linear Models (cont.)

● Adding more specificity to the equation:

○      = Predicted value of Y for instance i
○ b1 = Slope for variable X1

○ ei = Error for instance i

Y i
'=b0+b1 X i 1+e i

Y i
'



Linear Models (cont.)

● Adding more specificity to the equation:

    

Y i
'=b0+b1 X i 1+e i

Y i
'

ei

b1

b0 Xi1



Linear Models (cont.)

● Adding another variable to the equation:

○ Xi2 = i’s value on another variable added to the 
   model

○ b2 = Slope for variable X2

● Since there are multiple predictors (Xs) in this 
model,
○ This is called a multiple linear model
○ Or multiple linear regression

Y i
'=b0+b1 X i 1+b2 X i 2+e i



Linear Models vs. ANOVAs
● ANOVA (and ANCOVA, MANOVA, etc.)

○ Is a type of linear regression
○ Results focus on significance of variables

● When all are present in the model together

● Linear Regression
○ A general, flexible framework
○ Results (usually) focus on significance of whole 

model
● And changes in the whole model when variables are 

added or removed



Questions Best Addressed by
Linear Models vs. ANOVAs

● ANOVA (and ANCOVA, MANOVA, etc.)
○ Which variable is significant?
○ Is there an interaction between variables?

● Linear Regression
○ What is the best combination of variables?
○ Does a given variable significantly contribute more 

to what we already know?
○ Can also test interactions

● But also for groups of, e.g., theoretically-relevant 
variables



Linear Models (cont.)

● We can continue to add more variables to the 
model, e.g., X3 and X4:

Y i
'=b0+b1 X i 1+b2 X i 2+b3 X i 3+b4 X i 4+e i

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i

● When there are a lot of variables in the model, 
say k of them, we usually abbreviate the 
equation:



Linear Models (cont.)

● Adding more complexity to the equation (cont.):

○ Note the effects of predictors are separated
● Like semipartial correlations

○ Of course, we could test interactions by adding 
additional terms

● E.g., … + b1Xi1 + b2Xi2 + b3(Xi1Xi2) +…
○ Or test non-linear effects, also by adding terms

● E.g., … + b1Xi1 + b2Xi1 …

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i

2



Linear Models (cont.)

● Adding more complexity to the equation (cont.):

○ Just as we separated out the effects of the 
predictors,

● We can separate out sources of error (not shown)
○ E.g., per predictor / term in the model

● We can also combine error terms
○ E.g., when we “nest” one variable into another

● We will cover this when we discuss 
multilevel models

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i



Linear Models: Signal-to-Noise

● Signal-to-noise in the equation

○      is the estimated value of Yi 

○ The variance in       per se can be divided into:
● Changes due to the predictors 
● Changes due to “other things” (and relegated to 

error / noise term(s))
● (N.b., the intercept, b0, is a constant and not 

included in this partitioning)

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i

Y i
'

Y i
'`



Linear Models: Signal-to-Noise 
(cont.)

● Signal-to-noise in the equation (cont.)

○ The sum of squares representation of this partition 
into predictors & error looks like:

● Where      is the least-squares estimate of Yi

○ I.e., that predicted by the slope of the model

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i

∑
i=1

n

(Y i−Ȳ )2=∑
i

(Ŷ i−Ȳ )2+∑
i

(Y i−Ŷ i)
2

Ŷ i



Linear Models: Signal-to-Noise 
(cont.)

● I.e.:
● The squared sum of the deviations of each 

instance from the mean equals:
○ The squared sum of each predicted value from 

the mean
● (That predicted from all of the predictors)

○ Plus the squared sums of all other variation in 
Y from the predicted value

∑
i=1

n

(Y i−Ȳ )2=∑
i

(Ŷ i−Ȳ )2+∑
i

(Y i−Ŷ i)
2



Linear Models: Signal-to-Noise 
(cont.)

∑
i=1

n

(Y i−Ȳ )2=∑
i

(Ŷ i−Ȳ )2+∑
i

(Y i−Ŷ i)
2

● We could rewrite

● As:
  Total SS = SS from Regression + SS from Error

○ Or, further condensed as:

  SSTotal = SSReg. + SSError



Linear Models: Signal-to-Noise 
(cont.)

● Using SSTotal = SSReg. + SSError

○ We can compute the ratio of predicted to 
actual:

○ Or, equivalently:

Ratio of Predicted-to-Actual Variance=
SSReg.

SSTotal

Ratio of Predicted-to-Actual Variance=1−
SSReg.

SSError



Linear Models: Signal-to-Noise 
(final)

● We typically represent this ratio of       
predicted-to-actual
○ (or total variance minus proportion of error)...

● as R2
 

○ Yep, that’s what R2 means ☻

R2=
SSReg.

SSTotal

=1−
SSError

SSTotal



Linear Models (redux)

● More about the equation: 

                                                                         :
○ Y is assumed to follow a certain distribution

● This determines how error is modeled
○ E.g., is error assumed to be normally distributed

○ The Xs can be nominal, ordinal, interval, or ratio
● This affects how those variables are modeled
● As well as the error related to them

○ We could transform the terms on the right
● E.g., raise them to a power or take their log

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i



Linear Models (cont.)

● More about the equation: 

                                                                         :
○ E.g., for an ANOVA:

● Y is assumed to be normally distributed
● The Xs are nominal
● And the terms are not transformed

○ Called an “identity” because they are multiplied 
by 1

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i



Linear Models (final)

● Less noticeable in 

                                                                         :
○ E.g., for an ANOVA:

● Y is assumed to be normally distributed
● The Xs are nominal
● And the terms are not transformed

○ These terms are transformed in other models
○ This transformation is called a Link Function
○ Since it “links” the terms on the right to the 

predicted value of Y on the left

Y i
'=b0+b1 X i 1+b2 X i 2+…+bk X ik+e i



Types of Link Functions
Model Distribution of Y Link Types of Xs

ANOVA Normal Identity Nominal

ANCOVA Normal Identity Nominal & 
Interval / Ratio

Linear 
Regression

Normal Identity Interval / Ratio

Logistic 
Regression

Binomial Logistic Nominal & 
Interval / Ratio



Types of Link Functions 
(rev.)

Model Random 
Component

Link Systematic 
Component

ANOVA Normal Identity Categorical

ANCOVA Normal Identity Categorical & 
Continuous

Linear 
Regression

Normal Identity Continuous

Logistic 
Regression

Binomial Logit Categorical &/or 
Continuous



Generalized Linear Models

● That family of models is referred to as 
generalized linear models
○ ANOVAs, t-tests, and all other linear regressions 

are types of generalized linear models
○ Generalized linear models use maximum 

likelihood estimation (MLE) to compute terms
● The ordinary least squares of ANOVAs, etc. is 

itself a specific type of MLE
○ (If assumptions are met)

● So, yeah, it’s O.K. to still use OLS & ANOVAs

https://www.stat.uchicago.edu/~pmcc/pubs/paper32.pdf


Generalized Linear Models 
(cont.)

● N.b., confusingly, in addition to generalized 
linear models,
○ There are general linear models
○ “General linear model” simply refers to 

models with:
● Normal Random Components &
● Identity Link Functions

○ Like ANOVAs & “mulitple linear regressions”



Generalized Linear Models 
(final)

● Assumptions of generalized linear models:
○ Relationship between response and 

predictors must be expressible as a linear 
function

● Can even model heteroscedasticity
○ Cases must be iid (independent & identically 

distributed)
○ Predictors should not be too inter-correlated 

(lack of multicollinearity)
○ The random & link functions should 

approximate the real functions

https://articles.viriya.net/using_the_gamma_generalized_linear_model_for_modeling_continuous,_skewed_and_heteroscedastic_outcomes_in_psychology.pdf


Evaluating Distributions

● The actual distribution of error & scores does 
not need to strictly follow the assumed 
distribution
○ (E.g., the actual data don’t need to be completely 

normal)
○ But large deviations should be addressed



Evaluating Distributions:
Q-Q Plots

● We can use Q-Q plots to evaluate deviations 
from normality
○ Q-Q plots have the values of the actual data on the 

y-axis
○ And the values that each data point would have if 

they followed the given distribution on the x-axis
○ If all data fall on a straight line on the plot, then 

the data are exactly the values expected to be 
given that distribution



Evaluating Distributions:
Q-Q Plots (cont.)



Evaluating Distributions:
Q-Q Plots (cont.)

● Heavy (long) tails



Evaluating Distributions:
Q-Q Plots (cont.)

● Heavy (long) tail to the right



An Example
● Predict English / language arts GPA

○ With gender
● I.e., whether a student identifies as female

○ And special education status
● I.e., whether a student has an individualized education 

program (IEP)

● Comparing ANOVA with linear regression



ELA GPA and Gender



ELA GPA and IEP



Gender and IEP



Gender and IEP (cont.)



Gender and IEP (cont.)



Gender and IEP (cont.)



ANOVA Results



Linear Regression



Linear Regression (cont.)

In ANOVA values are:
   R2 = .535

  Adjusted R2 = .523



Linear Regression (cont.)



Linear Regression (cont.)

In Model 1:
● Intercept (b0) is 2.418
● Value for Gender  (b1) is 0.479



Linear Regression (cont.)

In Model 1:
● b0 ≈ 2.4
● b1 ≈ 0.5



Linear Regression (cont.)

In Model 1:
● Y’ = 2.4 + 0.5X + e



Dummy Variables
● In Model 1:

○ Y’ = 2.4 + 0.5X1

● I.e., ignoring error
● If a student is male:

○ X1 = 0

○ Y’ = 2.4 + 0.5(0)
○ Y’ = 2.4 + 0
○ Y’ = 2.4



Dummy Variables (cont.)

● In Model 1:

○ Y’ = 2.4 + 0.5X1

● I.e., ignoring error
● If a student is female:

○ X1 = 1

○ Y’ = 2.4 + 0.5(1)
○ Y’ = 2.4 + 0.5
○ Y’ = 2.9

Our analyses told us 
that 2.9
is significantly different 
than 2.4



Dummy Variables (cont.)

In Model 2:
● Intercept (b0) is 2.904
● Value for Gender  (b1) is 0.276
● Value for Special Education Status is  (b2) is -1.027



Dummy Variables (cont.)

In Model 2:
● b0 ≈ 2.9
● b1 ≈ 0.3
● b2 ≈ -1



Dummy Variables (cont.)

● In Model 2:

○ Y’ = 2.9 + 0.3X1 – 1X2

● I.e., ignoring error
● If a student is male and does not have an IEP:

○ X1 = 0

○ X2 = 0

○ Y’ = 2.9 + 0.3(0) – 1(0)
○ Y’ = 2.9 + 0 – 0
○ Y’ = 2.9



Dummy Variables (cont.)

● In Model 2:

○ Y’ = 2.9 + 0.3X1 – 1X2

● I.e., ignoring error
● If a student is male and does have an IEP:

○ X1 = 0

○ X2 = 1

○ Y’ = 2.9 + 0.3(0) – 1(1)
○ Y’ = 2.9 + 0 – 1
○ Y’ = 1.9



Dummy Variables (cont.)

● In Model 2:

○ Y’ = 2.9 + 0.3X1 – 1X2

● I.e., ignoring error
● If a student is female and does not have an IEP:

○ X1 = 1

○ X2 = 0

○ Y’ = 2.9 + 0.3(1) – 1(0)
○ Y’ = 2.9 + 0.3 – 0
○ Y’ = 3.2



Dummy Variables (final)

● In Model 2:

○ Y’ = 2.9 + 0.3X1 – 1X2

● I.e., ignoring error
● If a student is female and does have an IEP:

○ X1 = 1

○ X2 = 1

○ Y’ = 2.9 + 0.3(1) – 1(1)
○ Y’ = 2.9 + 0.3 – 1
○ Y’ = 2.2



Multicollinearity
● When two or more predictors share too much 

variance
● Two general sources:

○ Structural: Caused by how the model was 
constructed

● E.g., adding interaction terms
○ Data: Caused by variables that are 

inherently correlated



Multicollinearity (cont.)

● Problems caused by multicollinearity:
○ Parameter estimates of multicollinear terms 

can be unstable
● Significance tests of them can also fail

○ Reduces the power of the whole model
● Because the parameter estimates are less 

precise



Multicollinearity (cont.)

● Multicollinearity does not affect predictions 
made by the model
○ Or the model’s goodness-of-fit statistics

● Can be tested with a “variance inflation factor” 
(VIF)
○ VIF ranges from 1 to ∞
○ Where values >10 usually indicate problems



Multicollinearity (cont.)

● Addressing multicollinearity
○ Centering variables (subtracting the mean) 

can reduce structural multicollinearity
(Iacobucci et al., 2016)

○ Remove one of the correlated variables
○ Only make predictions / test model fit
○ Use another analysis

● E.g., canonical correlations or 
principal component analysis

https://articles.viriya.net/mean_centering_helps_alleviate_micro_but_not_macro_multicollinearity.pdf
https://www.cs.cmu.edu/~tom/10701_sp11/slides/CCA_tutorial.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf


Multicollinearity (final)

● Multicollinearity is typically not a concern if 
the variables with high multicollinearity are:
○ Control variables
○ Intentional products of other variables

● E.g., raised to a power, an interaction, etc.
○ Dummy variables



● When one case (participant, round of tests, 
etc.) is correlated with another case

● Can also produce unstable parameter 
estimates
○ Thus affecting significance tests

● And both Type 1 & 2 errors
● May also affect model goodness of fit

○ And not isolated to a few predictors

Independence of Cases



Independence of Cases
● Addressing non-independence

○ Best is through research design
○ Can also model inter-dependence

● E.g., nesting cases
○ As is done explicitly in multilevel 

(hierarchical) models

Independence of Cases (cont.)
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