Correlations, Part & Partial Correlations, & Multiple Linear Regressions

Correlations

Variance, Covariance, & Correlations

- Variance & Covariance
 - Importance in statistical analyses
- Covariance & Correlation
 - Relationship between them
 - Why use one or the other?
 - Both are descriptive statistics
 - Even though tests can be run on them

Assumptions in Correlations

- Assumptions made in computing correlations
 - Ordinal, interval, or ratio
 - Linear relationship*
- Assumptions make in testing correlations
 - Monotonic (or normal for Pearson's r)
 - Homoscedasic
 - No big outliers

Correlations & Error

- Correlations & Error
 - Correlations separate dispersion into variance & covariance
 - But make no assumptions about error
 - Viz., where error resides
 - Instead, both variables are assumed to be equally affected by error

Correlations & Error (cont.)

• Correlations & Error

$$r = \frac{\text{Cov}(X, Y)}{\text{SD}(X)\text{SD}(Y)}$$

- The (unshared) variances of both variables comprise the denominator
 - (This will be different for linear regression models)

Partial & Semi-Partial Correlations

- Correlations describe linear relationships between two variables
 - Without consideration of the influence of other variables
 - Partial and semipartial correlations account for associations with other variables

Partial & Semi-Partial Correlations (cont.)

- Partial Correlations
 - Partial correlations remove the effect of another variable from *both* of the correlated pair
- Semipartial Correlations
 - Also called "part correlations"
 - Removes the association of an other variables from one of the correlated pair
- N.b. that either can remove the effect of several other variables from one of the pair
 - (Or create even more complex arrangements, like <u>canonical correlations</u>)

Partial Correlations

- Conceptually, we:
 - 1.Compute correlation between X & Y
 - 2.Subtract from that the ratio of:
 - How much total variance is
 - and is not explained
 - by the correlations between between X & Z and between Y & Z

Partial Correlations (cont.)

• To wit:

$$\boldsymbol{r}_{xy,z} = \frac{\boldsymbol{r}_{xy} - (\boldsymbol{r}_{xz} \times \boldsymbol{r}_{yz})}{\sqrt{(1 - \boldsymbol{r}_{xz}^2) \times (1 - \boldsymbol{r}_{yz}^2)}}$$

- So, compute the correlation between X & Y
- Remove correlations with Z
- Divide by variance unexplained by the correlations between X & Z and between Y & Z

Semipartial Correlations

- Computationally very similar to a partial correlation
 - Differs only in the denominator:

$$r_{y(x \cdot z)} = \frac{r_{xy} - (r_{xz} \times r_{yz})}{\sqrt{1 - r_{xz}^2}}$$

 Where we only divide it by the variance unexplained in X & Z

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Linear Regressions

Linear Models

- Very commonly used in inferential statistics
- Simplest form is *Y* = *bX*, where:
 - Y = Output / response / criterion / DV
 - X = Input / predictor / IV
 - *b* = Slope of *X*
 - If data are standardized to a normal distribution, then convention has us use β instead of b

- Very commonly used in inferential statistics
- Simplest form is Y = bX
- However, we typically add at least two other terms: Y = b₀ + b₁X + e
 - Y = Response / criterion / DV
 - X = Predictor / IV
 - $b_0 = y$ -Axis intercept
 - b₁ = Slope of X
 - e = Error

The typical null hypothesis (H_o) of -"no effect" is expressed here as: $b_1 = 0$

Linear Models vs. Correlations

• Recall for a correlation:

$$r = \frac{\operatorname{Cov}(X, Y)}{\operatorname{SD}(X)\operatorname{SD}(Y)}$$

- The (unshared) variances of both variables comprise the denominator
- This is equivalent to simply drawing a line of "best fit" through the data
 - Without worrying about orientation

$$r = \frac{\text{Cov}(X, Y)}{\text{SD}(X)\text{SD}(Y)}$$

- For a linear regression, we instead minimize variance in only one variable
 - Typically the criterion (outcome)
 - This assumes that all unexplained variance (error) resides in the criterion
- So, in $Y = b_0 + b_1 X + e$:

$$b_1 = \frac{\operatorname{Cov}(X, Y)}{(\operatorname{SD}(Y))^2}$$

 This also means that b₁ is expressed in units of X per Y:

$$b_{1} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{SD}(Y)\operatorname{SD}(Y)}$$

- If we standardize both variables, then the units are the same
 - (In fact, they are removed)
- And *b*₁ becomes equivalent to the correlation
 - (And is conventionally expressed as β_1 instead of b_1)

Linear Models vs. Correlations (final)

$$r = \frac{\text{Cov}(X, Y)}{\text{SD}(X)\text{SD}(Y)}$$

•
$$Y = b_0 + b_1 X_1 + e$$

- Note:
 - Error is separated out
 - And placed on the side with the predictor
- Implications:
 - The value of X per se is without error
 - Because error is separated out (as *e*)
 - The intercept, slope, & error can be estimated separately
 - And their covariances with Y are thus separated

- Adding more specificity to the equation:
 Y'_i = b_0 + b_1 X_{i1} + e_i
 Y'_i = Predicted value of Y for instance i
 - b₁ = Slope for variable X₁
 - $e_i = \text{Error for instance } i$

• Adding more specificity to the equation: $Y'_{i} = b_{0} + b_{1} X_{i1} + e_{i}$

• Adding another variable to the equation:

$$Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + e_{i}$$

X_{i2} = i's value on another variable added to the model

$$b_2 = \text{Slope for variable } X_2$$

- Since there are multiple predictors (Xs) in this model,
 - This is called a **multiple** linear model
 - Or multiple linear regression

Linear Models vs. ANOVAs

- ANOVA (and ANCOVA, MANOVA, etc.)
 - Is a type of linear regression
 - Results focus on significance of variables
 - When all are present in the model together
- Linear Regression
 - A general, flexible framework
 - Results (usually) focus on significance of whole model
 - And changes in the whole model when variables are added or removed

Questions Best Addressed by Linear Models vs. ANOVAs

- ANOVA (and ANCOVA, MANOVA, etc.)
 - Which variable is significant?
 - Is there an interaction between variables?
- Linear Regression
 - What is the best combination of variables?
 - Does a given variable significantly contribute more to what we already know?
 - Can also test interactions
 - But also for *groups* of, e.g., theoretically-relevant variables

- We can continue to add more variables to the model, e.g., X₃ and X₄:
 Y'_i=b₀+b₁X_{i1}+b₂X_{i2}+b₃X_{i3}+b₄X_{i4}+e_i
- When there are a lot of variables in the model, say k of them, we usually abbreviate the equation:

$$Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{k}X_{ik} + e_{i}$$

Adding more complexity to the equation (cont.):

$$Y_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{k}X_{ik} + e_{i}$$

- Note the effects of predictors are separated
 - Like semipartial correlations
- Of course, we could test interactions by adding additional terms
 - E.g., ... + $b_1 X_{i1} + b_2 X_{i2} + b_3 (X_{i1} X_{i2}) + ...$
- Or test non-linear effects, also by adding terms

• E.g., ... +
$$b_1 X_{i1} + b_2 X_{i1}^2$$
...

Adding more complexity to the equation (cont.):

$$Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \ldots + b_{k}X_{ik} + e_{i}$$

- Just as we separated out the effects of the predictors,
 - We can separate out sources of error (not shown)
 E.g., per predictor / term in the model
 - We can also combine error terms
 - E.g., when we "nest" one variable into another
 - We will cover this when we discuss multilevel models

Linear Models: Signal-to-Noise

- Signal-to-noise in the equation
 - $Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{k}X_{ik} + e_{i}$
 - Y'_{i} is the estimated value of Y_{i}
 - The variance in Y'_i per se can be divided into:
 - Changes due to the predictors
 - Changes due to "other things" (and relegated to error / noise term(s))
 - (N.b., the intercept, b₀, is a constant and not included in this partitioning)

• Signal-to-noise in the equation (cont.)

$$Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{k}X_{ik} + e_{i}$$

• The sum of squares representation of this partition into predictors & error looks like:

$$\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} = \sum_{i} (\hat{Y}_{i} - \bar{Y})^{2} + \sum_{i} (Y_{i} - \hat{Y}_{i})^{2}$$

Where Ŷ_i is the least-squares estimate of Y_i
 I.e., that predicted by the slope of the model

$$\sum_{i=1}^{n} (\mathbf{Y}_{i} - \overline{\mathbf{Y}})^{2} = \sum_{i} (\hat{\mathbf{Y}}_{i} - \overline{\mathbf{Y}})^{2} + \sum_{i} (\mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i})^{2}$$

- l.e.:
- The squared sum of the deviations of each instance from the mean equals:
 - The squared sum of each predicted value from the mean
 - (That predicted from all of the predictors)
 - Plus the squared sums of all other variation in Y from the predicted value

We could rewrite

$$\sum_{i=1}^{n} (\mathbf{Y}_{i} - \bar{\mathbf{Y}})^{2} = \sum_{i} (\hat{\mathbf{Y}}_{i} - \bar{\mathbf{Y}})^{2} + \sum_{i} (\mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i})^{2}$$

• As:

Total SS = SS from Regression + SS from Error

• Or, further condensed as:

$$SS_{Total} = SS_{Reg.} + SS_{Error}$$

- Using SS_{Total} = SS_{Reg.} + SS_{Error}
 - We can compute the ratio of predicted to actual:

Ratio of Predicted-to-Actual Variance = $\frac{SS_{Reg.}}{SS_{Total}}$

• Or, equivalently:

Ratio of Predicted-to-Actual Variance = $1 - \frac{SS_{Reg.}}{SS}$
Linear Models: Signal-to-Noise (final)

- We typically represent this ratio of predicted-to-actual
 - or total variance minus proportion of error)...

• *as R*²

$$R^{2} = \frac{SS_{Reg.}}{SS_{Total}} = 1 - \frac{SS_{Error}}{SS_{Total}}$$

• Yep, that's what R² means 🙂

Linear Models (redux)

- More about the equation:
 - $Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{k}X_{ik} + e_{i}:$
 - Y is assumed to follow a certain distribution
 - This determines how error is modeled
 - E.g., is error assumed to be normally distributed
 - The Xs can be nominal, ordinal, interval, or ratio
 - This affects how those variables are modeled
 - As well as the error related to them
 - We could transform the terms on the right
 - E.g., raise them to a power or take their log

Linear Models (cont.)

- More about the equation:
 - $Y'_{i} = b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{k}X_{ik} + e_{i}:$
 - E.g., for an ANOVA:
 - Y is assumed to be normally distributed
 - The Xs are nominal
 - And the terms are not transformed
 - Called an "identity" because they are multiplied by 1

Linear Models (final)

- Less noticeable in
 - $Y'_{i} = b_{0} + b_{1} X_{i1} + b_{2} X_{i2} + \dots + b_{k} X_{ik} + e_{i}$:
 - E.g., for an ANOVA:
 - Y is assumed to be normally distributed
 - The Xs are nominal
 - And the terms are not transformed
 - These terms are transformed in other models
 - This transformation is called a Link Function
 - Since it "links" the terms on the right to the predicted value of Y on the left

Types of Link Functions

Model	Distribution of Y	Link	Types of Xs
ANOVA	Normal	Identity	Nominal
ANCOVA	Normal	Identity	Nominal & Interval / Ratio
Linear Regression	Normal	Identity	Interval / Ratio
Logistic Regression	Binomial	Logistic	Nominal & Interval / Ratio

Types of Link Functions (rev.)

Model	Random Component	Link	Systematic Component
ANOVA	Normal	Identity	Categorical
ANCOVA	Normal	Identity	Categorical & Continuous
Linear Regression	Normal	Identity	Continuous
Logistic Regression	Binomial	Logit	Categorical &/or Continuous

Generalized Linear Models

- That family of models is referred to as generalized linear models
 - ANOVAs, t-tests, and all other linear regressions are types of generalized linear models
 - Generalized linear models use maximum likelihood estimation (MLE) to compute terms
 - The ordinary least squares of ANOVAs, etc. is itself a specific type of MLE

• (If assumptions are met)

• So, yeah, it's O.K. to still use OLS & ANOVAs

Generalized Linear Models (cont.)

- N.b., confusingly, in addition to generalized linear models,
 - There are **general** linear models
 - "General linear model" simply refers to models with:
 - Normal Random Components &
 - Identity Link Functions
 - Like ANOVAs & "mulitple linear regressions"

Generalized Linear Models (final)

- Assumptions of generalized linear models:
 - Relationship between response and predictors must be expressible as a linear function
 - Can even <u>model heteroscedasticity</u>
 - Cases must be iid (independent & identically distributed)
 - Predictors should not be too inter-correlated (lack of multicollinearity)
 - The random & link functions should approximate the real functions

Evaluating Distributions

- The actual distribution of error & scores does not need to strictly follow the assumed distribution
 - (E.g., the actual data don't need to be completely normal)
 - But large deviations should be addressed

Evaluating Distributions: Q-Q Plots

- We can use Q-Q plots to evaluate deviations from normality
 - Q-Q plots have the values of the actual data on the y-axis
 - And the values that each data point would have if they followed the given distribution on the x-axis
 - If all data fall on a straight line on the plot, then the data are exactly the values expected to be given that distribution

Evaluating Distributions: Q-Q Plots (cont.)

Evaluating Distributions: Q-Q Plots (cont.)

• Heavy (long) tails

Evaluating Distributions: Q-Q Plots (cont.)

Heavy (long) tail to the right

An Example

- Predict English / language arts GPA
 - With gender
 - I.e., whether a student identifies as female
 - And special education status
 - I.e., whether a student has an individualized education program (IEP)
- Comparing ANOVA with linear regression

ELA GPA and Gender

	Correlations						
		ELA Grade	Female?				
ELA Grade	Pearson Correlation	1	.320**				
	Sig. (2- tailed)		.000				
	N	248	175				
Female?	Pearson Correlation	.320**	1				
	Sig. (2- tailed)	.000					
	Ν	175	592				

**. Correlation is significant at the 0.01 level (2-tailed).

ELA GPA and IEP

Correlations

		ELA Grade	Special Education Status
ELA Grade	Pearson Correlation	1	704**
	Sig. (2-tailed)		.000
	Ν	248	128
Special Education Status	Pearson Correlation	704 ^{**}	1
	Sig. (2-tailed)	.000	
	Ν	128	474

**. Correlation is significant at the 0.01 level (2-tailed).

Gender and IEP

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	Ν	Percent	Ν	Percent	Ν	Percent
Female? * Special Education Status	472	70.4%	198	29.6%	670	100.0%

Gender and IEP (cont.)

Gender and IEP (cont.)

Female? * Special Education Status Crosstabulation

Count

		No Diagnosed Disability	Has Diagnosed Disability	Total
Female?	Male	137	121	258
	Female	156	58	214
Total		293	179	472

Gender and IEP (cont.)

Chi-Square Tests								
	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)			
Pearson Chi-Square	19.473 ^a	1	.000					
Continuity Correction ^b	18.641	1	.000					
Likelihood Ratio	19.781	1	.000					
Fisher's Exact Test				.000	.000			
Linear-by-Linear Association	19.432	1	.000					
N of Valid Cases	472							

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 81.16.

b. Computed only for a 2x2 table

ANOVA Results

Tests of Between-Subjects Effects

ELA Grade

Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	47.905 ^a	3	15.968	47.133	.000				
Intercept	723.631	1	723.631	2135.891	.000				
Gender	1.275	1	1.275	3.763	.055				
Spec_Ed	34.708	1	34.708	102.445	.000				
Gender * Spec_Ed	.766	1	.766	2.262	.135				
Error	41.672	123	.339						
Total	1013.464	127							
Corrected Total	89.577	126							
a. R Squared =	a. R Squared = .535 (Adjusted R Squared = .523)								

Linear Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Female? ^b	•	Enter
2	Special Education Status ^b		Enter

a. Dependent Variable: ELA Grade

b. All requested variables entered.

rivaci Sammary	Mo	bdel	Sum	nma	ry ^c
----------------	----	------	-----	-----	-----------------

				Std. Error of	Change Statistics				
		R	Adjusted R	the	R Square	F			Sig. F
Model	R	Square	Square	Estimate	Change	Change	df1	df2	Change
1	.320 ^a	.102	.095	.71161	.102	14.379	1	126	.000
2	.727 ^b	.529	.521	.51776	.426	113.013	1	125	.000

a. Predictors: (Constant), Female?

b. Predictors: (Constant), Female?, Special Education Status

c. Dependent Variable: ELA Grade

In ANOVA values are: $R^2 = .535$ Adjusted $R^2 = .523$

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7.281	1	7.281	14.379	.000 ^b
	Residual	63.804	126	.506		
	Total	71.085	127			
2	Regression	37.577	2	18.788	70.087	.000 ^c
-	Residual	33.509	125	.268		
	Total	71.085	127			

- a. Dependent Variable: ELA Grade
- b. Predictors: (Constant), Female?
- c. Predictors: (Constant), Female?, Special Education Status

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.418	.087		27.866	.000
	Female?	.479	.126	.320	3.792	.000
2	(Constant)	2.904	.078		37.257	.000
	Female?	.276	.094	.185	2.944	.004
	Special Education Status	-1.027	.097	667	-10.631	.000

a. Dependent Variable: ELA Grade

In Model 1:

- Intercept (b_0) is 2.418
- Value for Gender (b₁) is 0.479

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.418	.087		27.866	.000
	Female?	.479	.126	.320	3.792	.000
2	(Constant)	2.904	.078		37.257	.000
	Female?	.276	.094	.185	2.944	.004
	Special Education Status	-1.027	.097	667	-10.631	.000

a. Dependent Variable: ELA Grade

In Model 1: • *b*₀ ≈ 2.4

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.418	.087		27.866	.000
	Female?	.479	.126	.320	3.792	.000
2	(Constant)	2.904	.078		37.257	.000
	Female?	.276	.094	.185	2.944	.004
	Special Education Status	-1.027	.097	667	-10.631	.000

a. Dependent Variable: ELA Grade

In Model 1:

• Y' = 2.4 + 0.5X + e

Dummy Variables

- In Model 1:
 - $Y' = 2.4 + 0.5 X_{1}$
 - I.e., ignoring error
- If a student is male:
 - X₁ = 0
 - Y' = 2.4 + 0.5(0)
 - Y' = 2.4 + 0
 - Y' = 2.4

- In Model 1:
 - $Y' = 2.4 + 0.5 X_{1}$
 - I.e., ignoring error
- If a student is female:

• Y' = 2.4 + 0.5(1)

•
$$Y' = 2.4 + 0.5$$

• Y' = 2.9

Our analyses told us that 2.9 is significantly different than 2.4

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.418	.087		27.866	.000
	Female?	.479	.126	.320	3.792	.000
2	(Constant)	2.904	.078		37.257	.000
	Female?	.276	.094	.185	2.944	.004
	Special Education Status	-1.027	.097	667	-10.631	.000

a. Dependent Variable: ELA Grade

- Intercept (*b*₀) is 2.904
- Value for Gender (*b*₁) is 0.276
- Value for Special Education Status is (b_2) is -1.027

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	2.418	.087		27.866	.000
	Female?	.479	.126	.320	3.792	.000
2	(Constant)	2.904	.078		37.257	.000
	Female?	.276	.094	.185	2.944	.004
	Special Education Status	-1.027	.097	667	-10.631	.000

a. Dependent Variable: ELA Grade

In Model 2: • $b_0 \approx 2.9$ • $b_1 \approx 0.3$ • $b_2 \approx -1$

•
$$Y' = 2.9 + 0.3X_1 - 1X_2$$

- I.e., ignoring error
- If a student is **male** and does **not** have an IEP:

$$X_1 = 0$$

- $\circ X_2 = 0$
- Y' = 2.9 + 0.3(0) 1(0)
- Y' = 2.9 + 0 0

•
$$Y' = 2.9 + 0.3X_1 - 1X_2$$

- I.e., ignoring error
- If a student is **male** and **does have** an IEP:

•
$$X_1 = 0$$

- $X_2 = 1$
- Y' = 2.9 + 0.3(0) 1(1)
- Y' = 2.9 + 0 1

•
$$Y' = 2.9 + 0.3X_1 - 1X_2$$

- I.e., ignoring error
- If a student is **female** and does **not** have an IEP:

•
$$X_{1} = 1$$

- $\circ X_2 = 0$
- Y' = 2.9 + 0.3(1) 1(0)
- Y' = 2.9 + 0.3 0

Dummy Variables (final)

•
$$Y' = 2.9 + 0.3X_1 - 1X_2$$

- I.e., ignoring error
- If a student is **female** and **does have** an IEP:

$$\circ X_1 = 1$$

- $X_2 = 1$
- Y' = 2.9 + 0.3(1) 1(1)
- Y' = 2.9 + 0.3 1
Multicollinearity

- When two or more predictors share too much variance
- Two general sources:
 - Structural: Caused by how the model was constructed
 - E.g., adding interaction terms
 - Data: Caused by variables that are inherently correlated

Multicollinearity (cont.)

- Problems caused by multicollinearity:
 - Parameter estimates of multicollinear terms can be unstable
 - Significance tests of them can also fail
 - Reduces the power of the whole model
 - Because the parameter estimates are less precise

Multicollinearity (cont.)

- Multicollinearity does not affect predictions made by the model
 - Or the model's goodness-of-fit statistics
- Can be tested with a "variance inflation factor" (VIF)
 - $^{\circ}$ VIF ranges from 1 to ∞
 - Where values >10 usually indicate problems

Multicollinearity (cont.)

- Addressing multicollinearity
 - Centering variables (subtracting the mean) can reduce structural multicollinearity (lacobucci et al., 2016)
 - Remove one of the correlated variables
 - Only make predictions / test model fit
 - Use another analysis
 - E.g., <u>canonical correlations</u> or <u>principal component analysis</u>

Multicollinearity (final)

- Multicollinearity is typically not a concern if the variables with high multicollinearity are:
 - Control variables
 - Intentional products of other variables
 - E.g., raised to a power, an interaction, etc.
 - Dummy variables

Independence of Cases

- When one case (participant, round of tests, etc.) is correlated with another case
- Can also produce unstable parameter estimates
 - Thus affecting significance tests
 - And both Type 1 & 2 errors
- May also affect model goodness of fit
 - And not isolated to a few predictors

Independence of Cases (cont.)

- Addressing non-independence
 - Best is through research design
 - Can also model inter-dependence
 - E.g., nesting cases

 As is done explicitly in multilevel (hierarchical) models

