Validity and Reliability

- •Early views saw validity as a static property
 - •And an instrument as either valid or not
 - "By validity it is meant the degree to which a test or examination measures what it purports to measure." (Ruch, 1924)

- •Early views saw validity as a static property (cont.)
 - •Often as evidenced with a correlation with an outside measure
 - E.g., Guilford (1946, p. 429):
 "[I]n a very general sense, a test is valid for anything with which it correlates."

- 1950s saw a seminal change to the field
 With a broadening view of validity
- •E.g., Campbell & Fiske (<u>1959</u>)
 - Argued for discrete types of validity
 - •And needs for multiple kinds of evidence

- •Publication of *Standards for Educational and Psychological Testing* (APA, AERA, & NCME,1966)
 - •Non-unitary, less static view of validity
 - •An instrument is valid to the extent to which it produces information useful for a given purpose

•Publication of *Standards* (APA, AERA, & NCME,1966; cont.)

- Included the "trinity" view of validity
 - First posited by Cronbach & Meehl (1955)
 - Viz.:
 - Construct validity
 - Content validity
 - Criterion validity

Construct Validity

- •The extent to which the instrument measures the intended (non-ostensible) construct
- •Considered by some to subsume content & criterion validities

Construct Validity (cont.)

- •Distinguished from "face validity"
 - Construct validity typically requires content experts
 - Face validity can use lay views

Content Validity

- "The extent to which a measure represents all facets of a given construct" (Wikipedia)
- •I.e., measures the full range
 - •And/or all dimensions of a multidimenstional trait

Criterion Validity

- •How well an instrument measures relevant outcomes
 - Do its measures correspond with other measures of the same trait
- •Sometimes subdivided into
 - Concurrent validity: Coeval predictions
 - Predictive validity: A priori predictions

Historical Views of Validity (redux)

- •By 1980s, emphasis shifted
 - •To the inferences and decisions made from a given instrument
 - 1985 Standards:
 - An instrument's validity is "the **appropriateness**, **meaningfulness**, and **usefulness**" of its measurements

- •Importantly, the 1985 Standards also:
 - •Conceived of validity support as a dynamic & on-going process
 - "[T]he process of accumulating evidence to support" inferences made
 - Began to deprecate the trinity view
 - "[T]he use of category labels should not be taken to imply . . . distinct types of validity"

Validity as a Unitary Construct

- •By the 1990s, consensus grew that validity is a unitary construct
 - •With multiple lines of evidence supporting it
 - "Although many kinds of evidence may be used, we do not have different kinds of validity" (Kane, 1994, p. 136)

Validity in the 1999 Standards

- "The inference regarding specific uses of a test are validated, not the test itself."
- "Rigorous distinctions between the categories [of types of validity] are not possible."
- "An ideal validation includes several types of evidence, which span" the trinity (p. <u>9</u>)

Validity in the 1999 Standards

•Validity is now "the degree to which evidence and theory support the interpretation of test scores by proposed uses of tests."

Types of Evidence

- •One supports valid uses by giving types of evidence:
 - 1. Construct-related evidence
 - 2. Content-related evidence
 - 3. Criterion-related evidence
 - 4. Validity generalization
 - 5. Differential prediction (DIF in IRT)

Types of Evidence (cont.)

- •Construct-Related Evidence
 - •Measure of the non-ostensible domain of interest
- •Content-Related Evidence
 - Extent to which items sample well the domain

Types of Evidence (cont.)

- •Criterion-related evidence
 - "How accurately can criterion performance be predicted from scores?"
- •Validity generalization
 - •How well uses can be "transported" between situations & applications

Types of Evidence (cont.)

- Differential prediction
 - •That the instrument may operate differently among different populations
 - •A rather new aspect
 - That is related to considerations of the *consequences* of testing . . .

Sources of Evidence

- •In addition, the 1999 *Standards* proffer different sources of evidence, based on:
 - 1. Test content
 - 2. Response processes
 - 3. Internal structure
 - 4. Relationships to other variables
 - 5. Consequences of testing

Sources of Evidence

- •In addition, the 1999 *Standards* proffer different sources of evidence, based on:
 - 1. Test content
 - 2. Response processes
 - 3. Internal structure
 - 4. Relationships to other variables
 - 5. Consequences of testing

- •Test Content
 - •Typically assessed via logical analyses and experts' evaluations
 - •Assessments of:
 - Sufficiency
 - Clarity
 - Relevance
 - Match between items & construct

- •Test Content (cont.)
 - •Also reviews:
 - Potential bias (culture, age, etc.)
 - Construct-irrelevant variance
 - Measuring *more* than it is intended to
 - Construct under-representation
 - Measuring *less* than it is intended to

- •In addition, the 1999 *Standards* proffer different sources of evidence, based on:
 - 1. Test content
 - 2. Response processes
 - 3. Internal structure
 - 4. Relationships to other variables
 - 5. Consequences of testing

•Response Processes

- Fit of response type with construct
- •E.g.,
 - Inclusion of social desirability or lack of self-awareness in self-report
 - Inability / inaccuracy of judges, e.g., to measure internal states from observations

- •In addition, the 1999 *Standards* proffer different sources of evidence, based on:
 - 1. Test content
 - 2. Response processes
 - 3. Internal structure
 - 4. Relationships to other variables
 - 5. Consequences of testing

- Internal Structure
 - Match between item response patterns and internal constructs
 - E.g., test of confirmatory factor analysis
 - Or also perhaps DIF
 - Arguably over-emphasized given ease of conducting CFAs

- •In addition, the 1999 *Standards* proffer different sources of evidence, based on:
 - 1. Test content
 - 2. Response processes
 - 3. Internal structure
 - 4. Relationships to other variables
 - 5. Consequences of testing

- •Relationships to Other Variables
 - Subsumes many "legacy" types of validity
 - E.g.,
 - Convergent & divergent validity
 - Comparisons of performance differences / similarities across groups
 - Studies of validity generalizations

- •In addition, the 1999 *Standards* proffer different sources of evidence, based on:
 - 1. Test content
 - 2. Response processes
 - 3. Internal structure
 - 4. Relationships to other variables
 - 5. Consequences of testing

Consequences of Testing

- •The positive & negative ramifications of being tested / given scores
- •Only briefly mentioned before the 1999 *Standards*
 - •This remains the most controversial source of validity evidence
 - •Being new, there are fewer guidelines for its assessment

Summary of Types of Evidence

1985 "Trinity" Types	1999 <i>Standards</i> Evidence based on:
Construct-related evidence (also subsumes content-related evidence)	Test Content
	Response Processes
	Internal Structure
	Relationships to Other Variables
Criterion-related evidence	
	Consequences of Testing

"Trinity"	'99 Sources:	Examples of Types of Evidence
Construct- related (and content- related) evidence	Test Content	Logical analyses & experts reviews of representativeness of items to domain, extent items span domain, clarity items, construct irrelevance, under- representation; extent any of these introduce bias
	Response Processes	Respondent interviews; studies of response patterns across populations; studies of how judges, researchers, etc. collect & interpret responses
	Internal Structure	Factor- and cluster-analytic studies; item analyses of inter-relationships; differential item functioning (DIF) via item response theory (IRT)
	Relationships to Other Variables	Convergence & discrimination studies (e.g., multi-trait &-method studies, p. 231); Hypothesis tests of effects of interventions on test scores; Known-group comparison & longitudinal studies studies on expected outcomes
		Correlations of scores with external, criterion variables measuring strength, directionality of relationships; Theory-guided group separation studies testing predictiveness of scores on relevant outcomes across & between populations; Differential group relationships and prediction studies; Studies of effectiveness of selections, classifications, & placements; Validity generalization studies
	Consequences of Testing	Studies of the extent to which expected/anticipated benefits or unexpected/unanticipated consequences are realized

Does This Matter?

- •The current view does represent a more sophisticated perspective
 - •That addresses how validity is actually used by the field
- •But, the field has been slow to adopt it
 - •So, your adoption of it may be warranted but under-appreciated

Reliability

Classical Measurement Theory

- •CMT models observed measurements (*O*) as composed of
 - O = T + E
 - *T* = True scores
 - Fixed for any given point in time
 - •E = Error
 - Unrelated to one's true score ($r_{TE} = 0$)
 - With mean = 0
 - Normally-distributed variance

Classical Definition of Reliability

Within a sample of measurements: Var (O) = Var (T) + Var (E)
Standardizing on observed scores:

$$\frac{Var(O)}{Var(O)} = \frac{Var(T)}{Var(O)} + \frac{Var(E)}{Var(O)} = 1$$

Classical Def. of Reliability (cont.)

- •Classical definition of reliability: Var(T)Var(O)
 - •This variance ratio is equivalent to a squared correlation •Reliability, then, is r_{TO}^2
 - - Denoted the reliability coefficient

Classical Def. of Reliability (cont.)

•And since Var (O) = Var (T) + Var (E):

$$\frac{Var(T)}{Var(T) + Var(E)} = \frac{Signal}{Signal + Noise}$$

Example

	(X ₀)		(X _t)		(X _e)
Respondent	Observed Score		True Score		Error
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	-15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev.	24.66		17.08		17.80

Example (cont.)

	(>	(₀)	(X _t)		(X _e)	
Respon	Obse dent Sce	erved ore	True Score		Error	
Ashle	ey 12	20 =	130	+	-10	
Bob	14	45 =	120	+	25	
Car	9	5 =	110	+	-15	
Denis	se 8	5 =	100	+	-15	$\overline{V} - 0$
Eric	11	= =	90	+	25	$\Lambda_E - 0$
Felici	ia 7	0 =	80	+	-10	
Mea	n 105	5.00	105		0	
Varian	ce 608	3.33	291.6	7	316.67	
Std. D	ev. 24.	66	17.08	3	17.80	

Example

	(X _o)		(X _t)		(X _e)	-
Respondent	Observed Score		True Score		Error	
Ashley	120	=	130	+	-10	-
Bob	145	=	120	+	25	
Carl	95	=	110	+	-15	
Denise	85	=	100	+	-15	$\overline{V} - 0$
Eric	115	=	90	+	25	$\Lambda_E - 0$
Felicia	70	=	80	+	-10	
Mean	105.00		105		0	-
Variance	608.33		291.67		316.67	$\rightarrow r - 0$
Std. Dev.	24.66		17.08		17.80	$T_{TE} - 0$

Example (cont.)

•Since
$$Var = S^2$$
:

$$S_O^2 = S_T^2 + S_E^2$$

Example (cont.)

	(X ₀)		(X _t)		(X _e)
Respondent	Observed Score		True Score		Error
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	-15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev.	24.66		17.08		17.80

291.67 + <u>316.67</u> 608.33

Conceptualizing Reliability

- Mathematically identical
 - I.e., identical values for the coefficient of reliability, R_{xx}
 - •However, they
 - •emphasize different facets of reliability's meaning
 - are all common ways of discussing reliability

Conceptualizing Reliability (cont.)

Lack of correlation btn observed & true

Statistical Basis of Reliability, in terms of:	Conceptual Basis of Reliability: Observed score in relation to:				
	True Scores	Measurement Error			
Proportions of Variance	Ratio of true score variance to observed score variance	Lack of error variance			

(Squared) correlation between

observed & true scores

Correlations

Conceptualizing Reliability (cont.)

Statistical Basis of Reliability, in terms of:	Conceptual Basis of Reliability: Observed score in relation to:				
	True Scores	Measurement Error			
Proportions of Variance	Ratio of true score variance to observed score variance $R_{XX} = \frac{S_T^2}{S_O^2}$	Lack of error variance			
Correlations	(Squared) correlation between observed & true scores	Lack of correlation btn observed & true			

Example (True Score)

291.67

608.33

	(X _°)		(X _t)		(X _e)	2
Respondent	Observed Score		True Score		Error	$R_{yy} = \frac{S_T^2}{T}$
Ashley	120	=	130	+	-10	$\mathbf{S}^2_{\mathbf{A}}$
Bob	145	=	120	+	25	50
Carl	95	=	110	+	-15	291.6
Denise	85	=	100	+	-15	$R_{vv} = \frac{2510}{100}$
Eric	115	=	90	+	25	^{^^} 608.3
Felicia	70	=	80	+	-10	
Mean	105.00		105		0	
Variance	608.33		291.67		316.67	$R_{XX} = .48$
Std. Dev.	24.66		17.08		17.80	

Conceptualizing Reliability (cont.)

	Conceptual Basis of Reliability:
of Reliability,	Observed score in relation to:

	Irue Scores		Measureme	nt Error
Proportions of Variance	Ratio of true score variance to observed score variance	$R_{XX} = \frac{S_T^2}{S_O^2}$	Lack of error variance	$R_{XX} = 1 - \frac{S_E^2}{S_O^2}$

Correlations

in terms of:

(Squared) correlation between observed & true scores

Lack of correlation btn observed & true

Example (Measurement Error)

	(X _°)		(X _t)		(X _e)	- ว
Respondent	Observed Score		True Score		Error	$R_{VV} = 1 - \frac{S_{E}^{2}}{1 - \frac{S_{E}^$
Ashley	120	=	130	+	-10	$- \lambda \lambda $ S_{2}^{2}
Bob	145	=	120	+	25	0
Carl	95	=	110	+	-15	316.67
Denise	85	=	100	+	-15	$R_{vv} = 1 - \frac{0.007}{0.007}$
Eric	115	=	90	+	25	^{AA} 608.33
Felicia	70	=	80	+	-10	
Mean	105.00		105		0	
Variance	608.33		291.67		316.67	$R_{XX} = .48$
Std. Dev.	24.66		17.08		17.80	

Conceptualizing Reliability (cont.)

Statistical Basis	Conceptual Basis of Reliability:
of Reliability,	Observed score in relation to:

in terms of:

Correlations

	True Scores		Measureme	ent Error
Proportions of	Ratio of true score variance to	S_T^2	Lack of error variance	S_E^2
Variance	observed score	$\kappa_{\chi\chi} = \frac{1}{\sigma^2}$		$K_{\chi\chi} \equiv I - \frac{1}{2}$

 S_0^2

(Squared) correlation between observed & true scores

variance

$$R_{XX} = r_T^2$$

Lack of correlation btn observed & true

 S_0^2

Example (Measurement Error)

	(X ₀)	<i>"</i> – (0	(X _t)		(X _e)
	Observer. $r_{TO} = .69$ True				
Respondent	Score		Score		Error
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	-15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev.	24.66		17.08		17.80

 $R_{XX} = r_{TO}^2$

 $R_{XX} = .69^2$

 $R_{\chi\chi}$ =.48

Conceptualizing Reliability (cont.)

Statistical Basis	Conceptual Basis of Reliability:
of Reliability,	Observed score in relation to:

	Irue Scores		Measurement Error		
Proportions of Variance	Ratio of true score variance to observed score variance	$R_{XX} = \frac{S_T^2}{S_O^2}$	Lack of error variance	$R_{XX} = 1 - \frac{S_E^2}{S_O^2}$	

Correlations

in terms of:

$$R_{XX} = r_T^2$$

Lack of correlation btn observed & true

$$R_{XX} = 1 - r_{EO}^2$$

Example (Measurement Error)

_		(X ₀)		(X_t)		(X _e)	_
	Respondent	Observec Score	$r_{TO} = .$	True Score		Error	$R_{XX} = 1 - r_{EO}^2$
_	Ashley	120	=	130	+	-10	-
	Bob	145	=	120	+	25	$R_{XX} = 172^2$
	Carl	95	=	110	+	-15	
	Denise	85	=	100	+	-15	$R_{XX} = 152$
	Eric	115	=	90	+	25	$\Lambda_{\chi\chi} - 1$.52
	Felicia	70	=	80	+	-10	P - 18
_	Mean	105.00		105		0	$- R_{XX} = .48$
	Variance	608.33		291.67		316.67	
_	Std. Dev.	24.66		17.08		17.80	_

Example (cont.)

- Remember R_{xx} is a variance ratio
 Which is equivalent to a squared correlation
 - Since $R_{XX} = .48$,
 - •.48 (48%) of the variance here is attributable to true scores

True Score = Domain Score

- •Items sample a domain
 - •Like other samples, they only estimate the population
- •True score would be one's scores on *all* items in that domain
 - •Thus reliability tests attempt to measure how well items represent the domain

Actual Reliability Tests

- •Four primary estimates
 - 1. Internal consistency
 - 2. Inter-rater
 - 3. Intra-rater / Test-retest
 - 4. Parallel form

Actual Reliability Tests

- •Four primary estimates
 - 1. Internal consistency
 - Correlation between items
 - 2. Inter-rater
 - Correlation between raters
 - 3. Intra-rater / Test-retest
 - Correlation between administrations
 - 4. Parallel form
 - Correlation between versions

Internal Consistency

- •Common measures of internal consistency
 - •Coefficient α
 - Used for interval / ratio data
 - May underestimate associations in ordinal, so ordinal α is better
 - •Kuder-Richardson Formulae 20 & 21
 - Used for dichotomous data

Coefficient α

- •aka Cronbach's α
- •Conceptually
 - •How well any item score predicts any other item score
 - •Or the mean of the distribution of all split-half correlations
 - •Thus better than split-half tests

- •Also conceptually: $\alpha = \frac{N \times \overline{c}}{(\overline{v} + (N - 1) \times \overline{c})}$
 - \overline{N} = number of items
 - • \bar{c} = mean covariance between item pairs
 - *v* = mean item variance

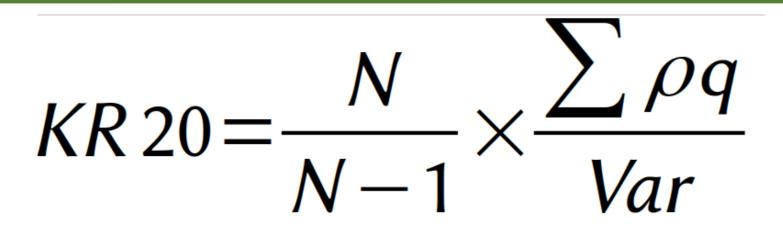
- •Generally acceptable levels
 - Excellent $\alpha \ge .9$
 - •Good $.9 > \alpha \ge .8$
 - •Acceptable $.8 > \alpha \ge .7$
 - Questionable $.7 > \alpha \ge .6$
 - Poor

- $.7 > \alpha \ge .6$ $.6 > \alpha \ge .5$
- •Unacceptable $.5 > \alpha$

- •Coefficient α considerations
 - •Sensitive to number of items:

$$\alpha = \frac{N \times \overline{c}}{(\overline{v} + (N - 1) \times \overline{c})}$$

- •Adding relevant items can increase it
- But very high levels may imply redundant items


- •Coefficient α considerations (cont.)
 - •Also sensitive to total variance
 - Adding non-redundant items from same domain can increase it
 - Sampling a heterogeneous group of participants can also increase it

- •Coefficient α considerations (cont.)
 - •Low levels may imply:
 - Nonunitary instrument
 - •Skewed distribution of scores
 - High (> 15%) rates of missing data can inflate α
 - •Especially if missingness is non-random

KR 20 / KR 21

- •Both are measures of consistency of results
- •KR 20
 - Used for items of varying difficulty
- •KR 21
 - •Used for items of equal difficulty

KR 20 / KR 21 (cont.)

- •*N* = number of items
- • ρ = proportion of participants "passing"
- *q* = proportion of participants "failing"
- Var = Total test variance

KR 20 / KR 21 (cont.)

$$KR21 = \frac{n}{n-1} \times \frac{M(n-M)}{n \times Var}$$

- •*n* = number of participants
- •M = mean score on test
- *Var* = Total test variance

KR 20 / KR 21 (cont.)

- •KR 20 / 21 are also sensitive to:
 - Instrument length
 - But less than coefficient $\boldsymbol{\alpha}$
 - Total instrument variance
 - Missing data
 - Especially since *q* can also include missing as well as "fails"

Actual Reliability Tests

- •Four primary estimates
 - 1. Internal consistency
 - 2. Inter-rater
 - 3. Intra-rater / Test-retest
 - 4. Parallel form

Interrater Reliability

- •Agreement is between raters, not items
- •For 2 raters:
 - •Nominal: χ^2 (or Cramer's *V*, <u>etc.</u>)
 - •Ordinal: Spearman's ρ (or <u>Kendall's τ </u>)
 - •Interval: Pearson's r
- •For >2 raters, use coefficient α

Actual Reliability Tests

- •Four primary estimates
 - 1. Internal consistency
 - 2. Interrater
 - 3. Intrarater / Test-retest
 - 4. Parallel form

Intrarater & Test-Retest

- •Typically uses Pearson's r
 - •Like test-retest, we strive for independent scores at each wave
 - •Waltz et al. (2017) recommend ~2 weeks
 - And to shuffle items
 - Ensure similar administration conditions
 - Interested here in correlation, not matching scores per se

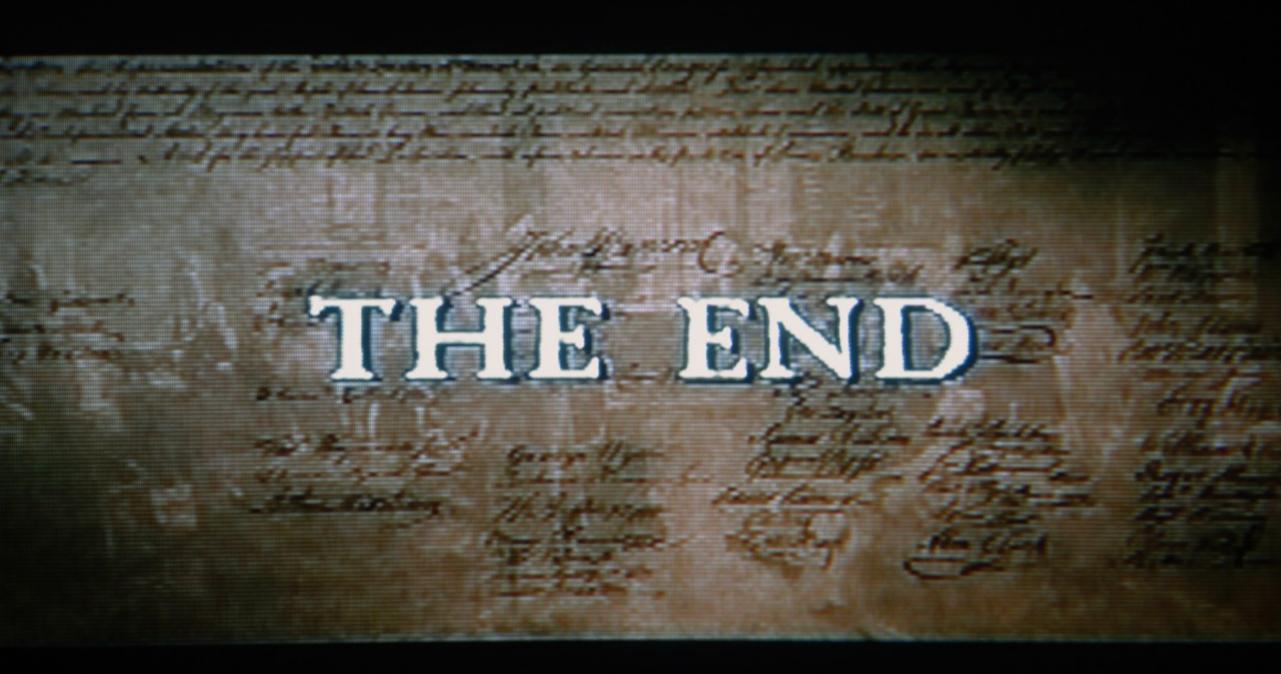
Intrarater & Test-Retest (cont.)

- •If indeed interested in matching scores
 - •Compute percentage of agreement
 - I.e., percent of times rater(s) assign the same score to each item
 - •Can be quite stringent for interval / ratio items
 - Also affected by test length (mean regression)

Actual Reliability Tests

- •Four primary estimates
 - 1. Internal consistency
 - 2. Inter-rater
 - 3. Intra-rater / Test-retest

4. Parallel form


Parallel Forms

- •Correlation between scores on 2+ versions of an instrument
 - Instruments must be created as separate forms
 - I.e., not just split-half tests of an instrument

Parallel Forms (cont.)

•Typically follows strong criterionrelated evidence of both instruments' validity

- E.g., first administering forms to same participants at same time
 - Testing means, variances, and convergence / discrimination with other relevant measures

References

- •APA, AERA, & NCME (<u>1999</u>). *Standards for Educational and Psychological Testing*.
- •Campbell, D. T. & Fiske, D. W. (<u>1959</u>). Convergent and discrimination validation by the multitrait-multimethod matrix. *Psychological Bulletin*, *56*, 81.
- •Cronbach, L. J. and Meehl, P. E. (1955). Construct validity in psychological tests. *Psychological Bulletin*, *52*, 281–302.
- •Guilford, J. P. (1946). New standards for test evaluation. *Educational and Psychological Measurement*, *6*, 427–438.
- •Kane, M. T. (1994). Validating interpretative arguments for licensure and certification examinations. *Evaluation & the Health Professions*, *17*, 133–159.
- •Ruch, G. M. (1924). *The improvement of the written examination*. Chicago: Scott, Foreman and Company.