SBP |
---|
118 |
126 |
132 |
110 |
144 |
120 |
\(\mathsf{{Mean} = \overline{X} = \frac{\Sigma X_{i}}{N}}\)
\(\mathsf{\overline{X} = \frac{118 + 126 + 132 + 110 + 144 + 120}{6} = \frac{750}{6} = 125}\)
SBP |
---|
118 |
126 |
132 |
110 |
140 |
120 |
\[\mathsf{{Variance} = s^{2} = \frac{\Sigma{(X_{i} - \overline{X})^2}}{n-1}}\]
\[\mathsf{{SD} = s = \sqrt{Variance}}\]
\(\mathsf{s^2 = \frac{(X_{1} - \overline{X})^2 + (X_{2} - \overline{X})^2 + (X_{3} - \overline{X})^2 + (X_{4} - \overline{X})^2 + (X_{5} - \overline{X})^2 + (X_{6} - \overline{X})^2}{N - 1}}\)
\(\ \ \ \ \mathsf{= \frac{(118 - 125)^2 + (126 - 125)^2 + (132 - 125)^2 + (110 - 125)^2 + (144 - 125)^2 + (120 - 125)^2}{6 - 1}}\)
\(\ \ \ \ \mathsf{= \frac{(-7)^2 + (1)^2 + (7)^2 + (-15)^2 + (19)^2 + (-5)^2}{5}}\)
\(\ \ \ \ \mathsf{= \frac{49 + 1 + 49 + 225 + 361 + 25}{5}}\)
\(\ \ \ \ \mathsf{= \frac{710}{5}}\)
\(\ \ \ \ \mathsf{= 142}\)
SBP |
---|
118 |
126 |
132 |
110 |
140 |
120 |
\[\mathsf{Standard\ Deviation = \sqrt{Variance} = \sqrt{\frac{\Sigma(X_{i} - \overline{X})^{2}}{N - 1}}}\]
\[\mathsf{s = \sqrt{s^{2}} = \sqrt{142} = 11.92}\]
\[\mathsf{\left( \frac{\text{kg} / \text{m}^{2}}{\text{mmHg}} \right)^{2}}\]
\[\mathsf{\tau = \frac{(N_{\mathsf{Concordant\ Pairs}}) - (N_{Discordant\ Pairs})}{{Total\ Number\ of\ Pairs}}}\]
Formula (for Pearson’s r) is:
\[ \mathsf{r_{Y,X_1 \cdot X_2} = \frac{r_{Y,X_1} - r_{Y,X_2} r_{X_1,X_2}}{\sqrt{(1 - r_{Y,X_2}^2) \times (1 - r_{X_1,X_2}^2)}}} \]
E.g., the partial corr. between BMI & BP controlling for
Age:
\[ \mathsf{r_{BMI\ \&\ BP\ \cdot\ Age} = \frac{r_{BMI\ \&\ BP} - (r_{BMI\ \&\ Age} \times r_{BP\ \&\ Age})}{\sqrt{(1 - r_{BMI\ \&\ Age}^2) \times (1 - r_{BP\ \&\ Age}^2)}}} \]
From: You, W., & Donnelly, F. (2023). Although in shortage, nursing workforce is still a significant contributor to life expectancy at birth. Public Health Nursing, 40(2), 229 – 242. doi: 10.1111/phn.13158
Continued from You & Donnelly (2023)
Formula semipartial correlation:
\[ \mathsf{sr_{Y,X_1 \cdot X_2} = \frac{r_{Y,X_1} - r_{Y,X_2} r_{X_1,X_2}}{\sqrt{1 - r_{X_1,X_2}^2}}} \]
Formula partial correlation:
\[ \mathsf{r_{Y,X_1 \cdot X_2} = \frac{r_{Y,X_1} - r_{Y,X_2} r_{X_1,X_2}}{\sqrt{(1 - r_{Y,X_2}^2) \times (1 - r_{X_1,X_2}^2)}}} \]
E.g., semipartial corr. between BMI & BP, removing the effect of Age from BP:
\[ \mathsf{sr_{BMI\ \&\ BP\ \cdot\ Age} = \frac{r_{BMI\ \&\ BP} - (r_{BMI\ \&\ Age} \times r_{BP\ \&\ Age})}{\sqrt{1 - r_{BP\ \&\ Age}^2}}} \]
For partial it was:
\[ \mathsf{r_{BMI\ \&\ BP\ \cdot\ Age} = \frac{r_{BMI\ \&\ BP} - (r_{BMI\ \&\ Age} \times r_{BP\ \&\ Age})}{\sqrt{(1 - r_{BMI\ \&\ Age}^2) \times (1 - r_{BP\ \&\ Age}^2)}}} \]
Group | Time 1 | Time 2 |
---|---|---|
Cohort A | Treated | Nothing |
Cohort B | Nothing | Treated |