SBP |
---|
118 |
126 |
132 |
110 |
144 |
120 |
Mean=¯X=ΣXiN
¯X=118+126+132+110+144+1206=7506=125
SBP |
---|
118 |
126 |
132 |
110 |
140 |
120 |
Variance=s2=Σ(Xi−¯X)2n−1
SD=s=√Variance
s2=(X1−¯X)2+(X2−¯X)2+(X3−¯X)2+(X4−¯X)2+(X5−¯X)2+(X6−¯X)2N−1
=(118−125)2+(126−125)2+(132−125)2+(110−125)2+(144−125)2+(120−125)26−1
=(−7)2+(1)2+(7)2+(−15)2+(19)2+(−5)25
=49+1+49+225+361+255
=7105
=142
SBP |
---|
118 |
126 |
132 |
110 |
140 |
120 |
Standard Deviation=√Variance=√Σ(Xi−¯X)2N−1
s=√s2=√142=11.92
(kg/m2mmHg)2
τ=(NConcordant Pairs)−(NDiscordant Pairs)Total Number of Pairs
Formula (for Pearson’s r) is:
rY,X1⋅X2=rY,X1−rY,X2rX1,X2√(1−r2Y,X2)×(1−r2X1,X2)
E.g., the partial corr. between BMI & BP controlling for
Age:
rBMI & BP ⋅ Age=rBMI & BP−(rBMI & Age×rBP & Age)√(1−r2BMI & Age)×(1−r2BP & Age)
From: You, W., & Donnelly, F. (2023). Although in shortage, nursing workforce is still a significant contributor to life expectancy at birth. Public Health Nursing, 40(2), 229 – 242. doi: 10.1111/phn.13158
Continued from You & Donnelly (2023)
Formula semipartial correlation:
srY,X1⋅X2=rY,X1−rY,X2rX1,X2√1−r2X1,X2
Formula partial correlation:
rY,X1⋅X2=rY,X1−rY,X2rX1,X2√(1−r2Y,X2)×(1−r2X1,X2)
E.g., semipartial corr. between BMI & BP, removing the effect of Age from BP:
srBMI & BP ⋅ Age=rBMI & BP−(rBMI & Age×rBP & Age)√1−r2BP & Age
For partial it was:
rBMI & BP ⋅ Age=rBMI & BP−(rBMI & Age×rBP & Age)√(1−r2BMI & Age)×(1−r2BP & Age)
Group | Time 1 | Time 2 |
---|---|---|
Cohort A | Treated | Nothing |
Cohort B | Nothing | Treated |