Intro to Linear Regression

Overview

- Review of Underlying Concepts in Inferential Statistics
- Understanding Linear Models
- Terms in Linear Models
- An Example
- Further Considerations

Review of Underlying Concepts

Review of Underlying Concepts

- Variance & Covariance
 - Importance in statistical analyses
- Covariance & Correlation
 - Relationship between them
 - Why use one or the other?
 - Both are descriptive statistics
 - * Even though tests can be run on them

Review of Underlying Concepts (cont.)

- Assumptions made in computing correlations
 - Measurement level is correctly conceived (ordinal, interval, ratio, etc.)
 - Relationship is linear
- Assumptions made in testing their significance
 - Monotonicity
 - * For Pearson's r, also that variables are normally distributed & homoscedastic
 - · And that the variables are bivariate normal
 - No big outliers

Review of Underlying Concepts (cont.)

- Partial & Semipartial Correlations
 - Semipartial correlations remove the effect of another variable from **one** of the correlated pair
 - Could remove the effect of several other variables from one of the pair
 - * (Or create even more complex arrangements, like canonical correlations)

Review of Underlying Concepts (cont.)

- Correlations & Error
 - Correlations separate dispersion into variance & covariance
 - * But make no assumptions about where error comes from
 - However, when testing significance of Pearson's r, error is assumed to be normally distributed

Review of Underlying Concepts (end)

- Correlations & Error (cont.)
 - The (unshared) variances of both variables comprise the denominator
 - * (This will be different for linear regression models)

Understanding Linear Models

Basic Concepts

- Simplest form of a linear relationship is Y = bX
 - Where:
 - * Y =Outcome / response / criterion / DV
 - * $X = \mathbf{Predictor} / \mathrm{input} / \mathrm{IV}$
 - * b = Slope of X
 - . The typical null hypothesis (H_0) of "no effect" is expressed here as: $b_1=0$
 - · (If data are standardized, the convention is to write instead of b)

Basic Concepts (cont.)

- However, we typically add: $Y = b_0 + b_1 X_1 + e$
 - -Y = Outcome
 - $-b_0$ = Value of X at y-axis intercept
 - $\vec{b_1}$ = Slope of X
 - $-X_1 = \text{Predictor } X_1$
 - -e = Error

Linear Models vs. Correlations

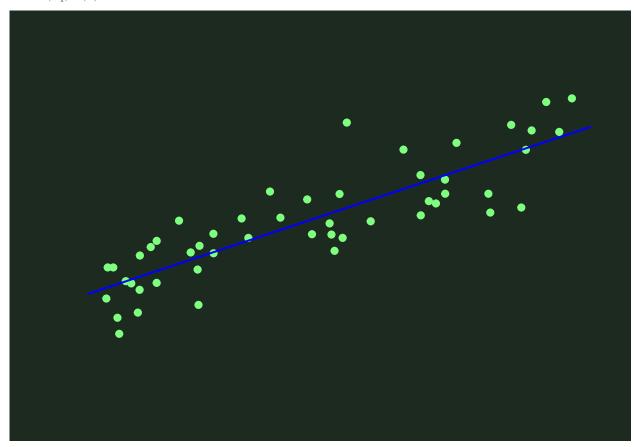
• For a correlation:

$$r = \frac{\mathrm{Cov}(X_1, Y)}{\mathrm{SD}(X_1)\mathrm{SD}(Y)}$$

- The (unshared) variances of both variables comprise the denominator
- This is equivalent to simply drawing a line of "best fit" through the data
 - Without worrying about orientation
 - * I.e., without worrying about where the axes are—or where unshared variance is coming from

Linear Models vs. Correlations (cont.)

$$r = \frac{\mathrm{Cov}(X_1,Y)}{\mathrm{SD}(X_1)\mathrm{SD}(Y)};$$
 here, $r =$.86:

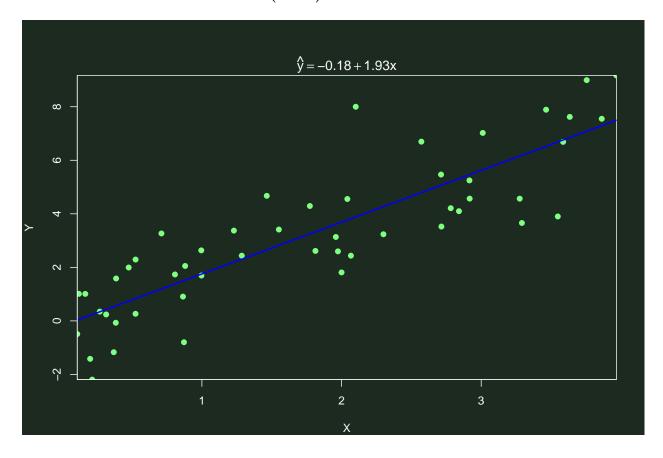


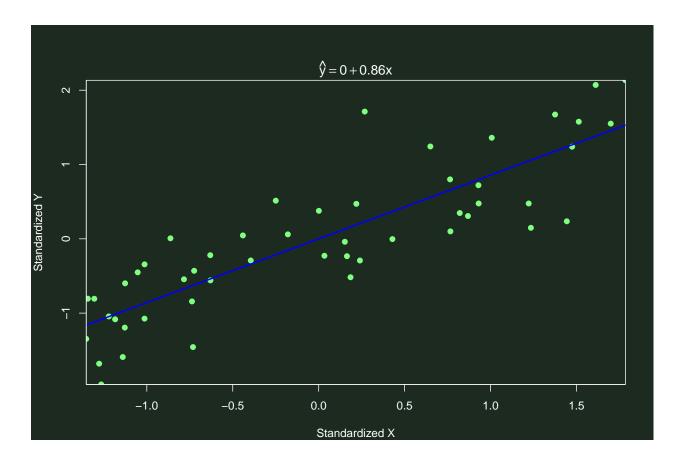
Linear Models vs. Correlations (cont.)

- For a linear regression, we instead minimize variance for only one variable
 - Typically the outcome
 - This assumes that all variance (error) resides in the outcome
- So, in $Y = b_0 + b_1 X + e$:

$$b_1 = \frac{\mathrm{Cov}(X_1,Y)}{(\mathrm{SD}(Y))^2}$$

Linear Models vs. Correlations (cont.)





More About the Equation

- $Y = b_0 + b_1 X_1 + e$
- Note again that error is separated out
 - And placed on the side with the predictor
- Implications:
 - $-\,$ The value of X_1 per se is without error
 - * Because error is separated out (as e)
 - The intercept, slope, & error can be estimated separately
 - * And their covariances with Y are thus separated

More About the Equation (cont.)

• Adding more specificity to the equation:

$$\hat{Y}_i = b_0 + b_1 X_{i1} + e_i$$

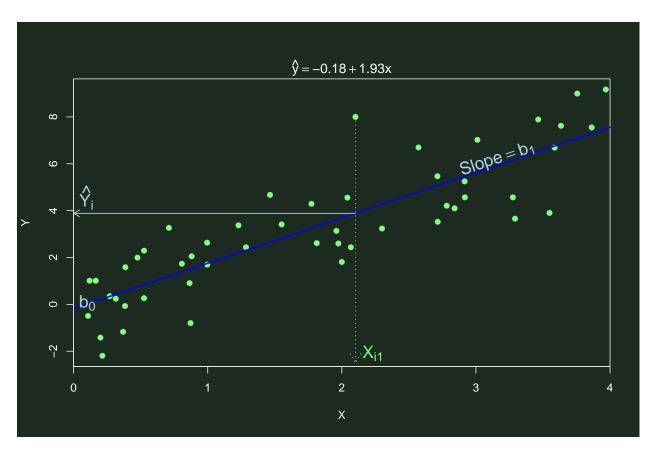
- $\begin{array}{l} -\ \hat{Y}_i = \text{Predicted value of } Y \text{ for participant } i \\ -\ b_1 = \text{Slope for variable } X_1 \\ -\ X_{i1} = \text{Value on } X_1 \text{ for participant } i \end{array}$

- $-e_i = \text{Error of measurement of participant } i$'s outcome

More About the Equation (cont.)

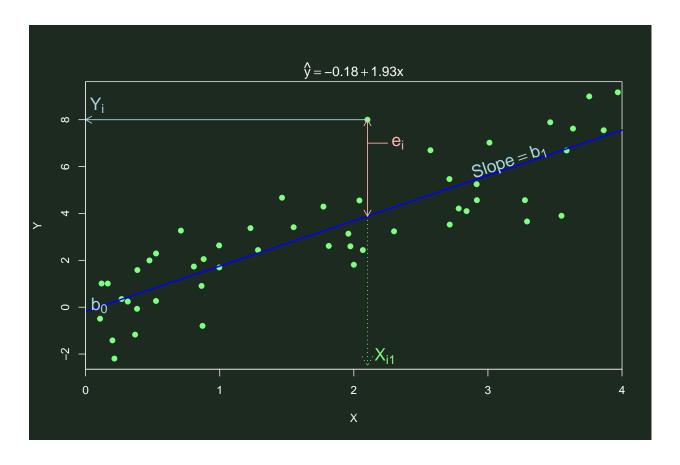
- Participant i's score on X_1 here is 2.10 The predicted value of Y_i for participant i is:

$$-~\hat{Y}_i = -0.18 + (1.93 \times 2.10) = 3.97$$



- The \boldsymbol{actual} value of Y_i for participant i also includes the error:

$$-\ Y_i = -0.18 + (1.93 \times 2.10) + 4.13 = 8.00$$



More About the Equation (end)

- Adding another variable to the equation:
 - $\hat{Y}_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + e_i$
 - $X_{i2}={\it Participant}\ i$'s value on the other variable (X_2) added to the model $b_2={\it Slope}$ for X_2
- Since there are multiple predictors (Xs) in this model,
 - This is called a **multiple** linear model
 - Or multiple linear regression

Linear Models vs. ANOVAs

- ANOVA (and ANCOVA, MANOVA, etc.)
 - Is a type of linear regression
 - Results focus on significance of variables
 - * When all are present in the model together
- Linear Regression
 - Is a more flexible framework
 - Can model complex relationships & data structures
 - * E.g., non-linear relationships & nested data
 - And can test whole models
 - * And changes to the whole model when variables are added or removed

Questions Best Addressed by ANOVAs vs. Linear Models

- ANOVAs (and ANCOVAs, MANOVAs, etc.) can ask:
 - Which variable is significant?
 - Is there an interaction between variables?
- Linear regressions can also ask:
 - What is the best combination of variables?
 - Does a given variable—or set of variables—significantly contribute to what we already know?

Terms in Linear Models

Adding More Terms to Models

• We can continue to add more variables to the model, e.g., X_3 and X_3 :

$$\hat{Y}_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + b_3 X_{i3} + b_4 X_{i4} + e_i$$

• When there are a lot of variables in the model, then we usually abbreviate the equation:

$$\hat{Y}_i = b_0 + b_1 X_{i1} \dots + b_k X_{ik} + e_i$$

- Were k is the number of variables

Adding More Terms to Models (cont.)

$$\hat{Y}_i = b_0 + b_1 X_{i1} \dots + b_k X_{ik} + e_i$$

• We can test interactions by adding additional terms

- E.g.,
$$...b_1X_{i1} + b_2X_{i2} + \mathbf{b_3}(\mathbf{X_{i1}X_{i2}})...$$

• Or test non-linear effects, also by adding terms

- E.g.,
$$...b_1X_{i1} + \mathbf{b_2X_{i1}^2}...$$

Adding More Terms to Models (end)

- Just as we separated out the effects of the predictors,
 - We can separate out sources of error
 - * E.g., per predictor/term in the model
- We can also combine error terms
 - E.g., when we "nest" one variable into another
 - * We will cover this when we discuss multilevel (aka hierarchical) models

Signal-to-Noise in Linear Models

• Signal-to-noise in the equation

$$\hat{Y}_i = b_0 + b_1 X_{i1} ... + b_k X_{ik} + e_i$$

- The variance in \hat{Y}_i is divided into:
 - Changes due to the predictors
 - Changes due to "other things" (and relegated to error / noise term(s)
 - I.e., into signals and noise(s)
 - (N.b., the intercept, b_0 , is a constant and not included in this partitioning of variance)

Signal-to-Noise in Linear Models (cont.)

$$\hat{Y}_i = b_0 + b_1 X_{i1}... + b_k X_{ik} + e_i$$

• The sum of squares representation of this partition into predictors & error looks like:

$$\sum_{i=1}^n (Y_i - \overline{Y})^2 = \sum_i (\hat{Y}_i - \overline{Y})^2 + \sum_i (Y_i - \hat{Y}_i)^2$$

Signal-to-Noise in Linear Models (cont.)

$$\sum\limits_{i=1}^n (Y_i - \overline{Y})^2 = \sum\limits_{i} (\hat{Y}_i - \overline{Y})^2 + \sum\limits_{i} (Y_i - \hat{Y}_i)^2$$

- I.e., the squared sum of the differences of each instance (Y_i) from the mean (\overline{Y}) equals:
 - The squared sum differences of each predicted value (\hat{Y}_i) from the mean
 - Plus the squared sums of differences of the actual values $(Y_i s)$ from the respective predicted values

Signal-to-Noise in Linear Models (cont.)

• Another way of saying this:

$$\sum\limits_{i=1}^n (Y_i - \overline{Y})^2 = \sum\limits_i (\hat{Y}_i - \overline{Y})^2 + \sum\limits_i (Y_i - \hat{Y}_i)^2$$

• Is to say this:

Total SS = SS from Regression + SS from Error

- Or, further condensed as:

*
$$SS_{Total} = SS_{Reg.} + SS_{Error}$$

Signal-to-Noise in Linear Models (cont.)

- Using $SS_{Total} = SS_{Reg.} + SS_{Error}$,
 - We can compute the ratio of predicted to actual: Ratio of Predicted-to-Actual Variance = $\frac{SS_{Reg.}}{SS_{Total}}$
 - * Or, equivalently as $1 \frac{SS_{Reg.}}{SS_{Error}}$

. . .

• We typically represent this ratio as \mathbb{R}^2 :

$$R^2 = \frac{SS_{Reg.}}{SS_{Total}} = 1 - \frac{SS_{Reg.}}{SS_{Error}}$$

. .

Yep, that's what \mathbb{R}^2 means in ANOVAs

The Equation's Terms

$$\hat{Y}_i = b_0 + b_1 X_{i1} ... + b_k X_{ik} + e_i$$

- Y is assumed to follow a certain distribution
 - This determines how error is modeled
 - E.g., is error usually assumed to be normally distributed
 - But both distributions can be assumed to be something else
 - * E.g., logarithmic

The Equation's Terms (cont.)

$$\hat{Y}_i = b_0 + b_1 X_{i1} ... + b_k X_{ik} + e_i \text{:}$$

- Xs can be nominal, ordinal, interval, or ratio
 - This affects how those variables are modeled
 - As well as the error related to them
- We could transform the terms on the right
 - E.g., raise them to a power or take their log

The Equation's Terms (cont.)

$$\hat{Y}_i = b_0 + b_1 X_{i1} ... + b_k X_{ik} + e_i :$$

- For an **ANOVA**:
 - -Y is assumed to be normally distributed
 - The Xs are nominal
 - And the terms are not transformed
 - * Called an "identity" because they are multiplied by 1
 - This "identity transformation" looks like this:

$$\hat{Y}_i = 1 \times (b_0 + b_1 X_{i1} ... b_k X_{ik} + e_i)$$

The Equation's Terms (end)

- The terms can be transformed in other models
 - This transformation is called a **Link Function**
 - * Since it "links" the terms on the right to the predicted value of Y on the left
- E.g., logistic regression uses a logarithmic (e) link:

E.g., logistic regression uses a logarithm
$$\hat{Y}_i = \frac{e^{b_0+b_1X_{i1}+\cdots+b_kX_{ik}}}{1+e^{b_0+b_1X_{i1}+\cdots+b_kX_{ik}}}$$
 which is more often written as:
$$\ln\frac{\hat{Y}_i}{1-\hat{Y}_i} = b_0+b_1X_{i1}+\cdots+b_kX_{ik}$$

Generalized Linear Models

- That very general family of models is referred to as generalized linear models
 - ANOVAs, t-tests, and all other linear regressions are types of generalized linear models
 - Generalized linear models typically use maximum likelihood estimation (MLE) to compute terms
 - * The ordinary least squares of ANOVAs, etc. is itself a specific type of MLE
 - · (If assumptions are met)

Generalized Linear Models (cont.)

- N.b., confusingly, in addition to generalized linear models,
 - There are **general** linear models
 - "General linear model" simply refers to models you already know.
 - * I.e., those with:
 - · Normally-distributed, iid variables
 - · Identity link functions
 - * Like ANOVAs & multiple linear regressions

Generalized Linear Models (end)

- Assumptions of generalized linear models:
 - Relationship between response and predictors must be expressible as a linear function
 - * But many can model heteroscedasticity well
 - Cases must be independent of each other
 - * But predictors should not be too inter-correlated (lack of multicollinearity)
 - The random & link functions should approximate the real functions

An Example

Predicting BMI from Sex & Neighborhood Safety

- Predicting body mass index levels among adolescents from:
 - 1. Whether an adolescent is biologically female
 - 2. Whether they feel their neighborhood is safe
- via SPSS (v. 29)

Data Used

- From the National Longitudinal Study of Adolescent to Adult Health (Add Health)
 - Using the prepared add_health.sav dataset
 - Since data are longitudinal, only the first instance (wave) of data collection was used
 - * Selected via:
 - 1. Data > Select Cases...
 - 2. Under If condition is satisfied, added Wave = 1 to select only the first wave

Descriptives

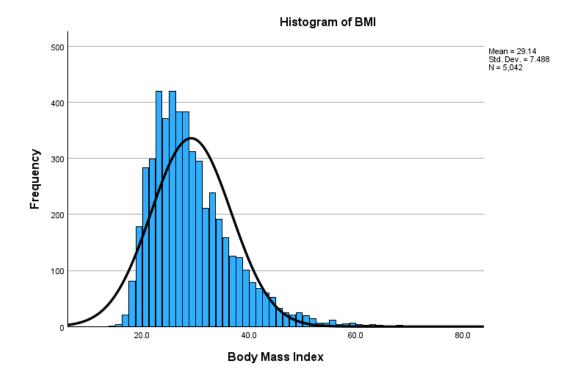
Descriptive Statistics

	N	Minimum	Maximum	Me	an
	Statistic	Statistic	Statistic	Statistic	Std. Error
Body Mass Index	5042	14.4	70.3	29.144	.1055
Biological Sex	6503	0	1	.52	.006
Feel Safe in Neighborhood	6468	0	1	.90	.004
Valid N (listwise)	5025				

- The mean BMI (29.144) was nearly obese
- Since Bio_Sex was coded 0 = Male & 1 = Female, 52% of the participants were biologically female
- And 90% reported feeling safe in their neighborhood
- About 77% (5025/6503) of cases had data on all three variables

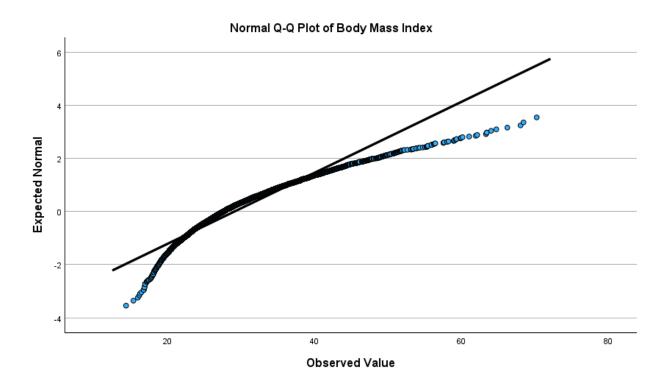
Descriptives (cont.)

- BMI was positively skewed
- So, those with exceptionally high BMIs affect the results more



Descriptives: Q-Q Plot

- ullet Analyze > Explore... > Plots > Normality plots with tests
- That skew—and a limited lower range—caused some deviations from normality



Descriptives: 2×2 Table

- $\bullet \ {\tt Analyze} > {\tt Descriptives} \ {\tt Statistics} > {\tt Crosstabs...} \\$
- The number of adolescents who felt safe in their neighborhood is not significantly different between the sexes

		Feel Safe in N			
		(0) No	(1) Yes	Total	
Biological Sex	0	314	2818	3132	
	1	361	2975	3336	
Total		675	5793	6468	

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.095ª	1	.295		
Continuity Correction ^b	1.011	1	.315		
Likelihood Ratio	1.096	1	.295		
Fisher's Exact Test				.309	.157
Linear-by-Linear Association	1.094	1	.296		
N of Valid Cases	6468				

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 326.86.
- b. Computed only for a 2x2 table

Correlations

- The correlations also reflect the weak relationship between Bio_Sex & Feel_Safe_in_Nghbrhd
- Feeling safe—but not sex—significantly correlated with BMI

Correlations

		Body Mass Index	Biological Sex	Feel Safe in Neighborhood
Body Mass Index	Pearson Correlation	1	.026	058**
	Sig. (2-tailed)		.066	<.001
	N	5042	5041	5025
Biological Sex	Pearson Correlation	.026	1	013
	Sig. (2-tailed)	.066		.296
	N	5041	6503	6468
Feel Safe in Neighborhood	Pearson Correlation	058**	013	1
	Sig. (2-tailed)	<.001	.296	
	N	5025	6468	6468

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations with CIs

- The 95% confidence intervals (and correlations themselves) are slightly different when using Fisher's r-to-z transformation versus bootstrapping
- Given the deviations from normality, bootstrapping is preferable here

95% confidence intervals generated from Fisher's r-to-z transformation:

Correlations

		Statistic						
Variable	Variable2	Correlation	Count	Lower C.I.	Upper C.I.	Notes		
BMI	Bio_Sex	.026	5041	002	.053			
	Feel_Safe_in_Nborhood	058	5025	085	030			

Missing value handling: PAIRWISE, EXCLUDE. C.I. Level: 95.0

95% confidence intervals generated from bootstrapping:

Correlations

				Biological Sex	Feel Safe in Neighborhood
Body Mass Index	Pearson Co	rrelation		.025	058**
	Sig. (2-tailed	d)	.078	<.001	
	N		5025	5025	
	Bootstrap ^c	Bias		.000	.000
		Std. Error		.014	.016
		95% Confidence Interval	Lower	003	092
			Upper	.053	028

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Linear Regression

- Conducted via:
 - 1. Analyze > Regression > Linear
 - 2. BMI as Dependent
 - 3. Bio_Sex & Feel_Safe_in_Nghbrhd as predictors in Block 1 of 1

Linear Regression (cont.)

- The combination of Bio_Sex & Feel_Safe_in_Nghbrhd did not explain much of the variance in BMI scores
 - The R^2 was .004; adjusted for number of terms in the model, it was .003
 - This combination of variables thus only accounted for about 0.3% 0.4% of the total variance in BMIs
 - * The high standard error, however, indicates that replications may find rather different R^2 s

c. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.061 ^a	.004	.003	7.4992

 a. Predictors: (Constant), Feel Safe in Neighborhood, Biological Sex

Linear Regression (cont.)

- Nonetheless, the model was significant
 - The intercept & sample size both surely helped
- This ANOVA source table presents the effect of the overall model
 - Like first testing a variable in an ANOVA before conducting post hocs, this helps protect against over-interpreting

ANOVA ^a									
Model		Sum of Squares	df	Mean Square	F	Sig.			
1	Regression	1859.991	2	929.996	16.537	<.001 b			
	Residual	499677.905	8885	56.238					
	Total	501537.896	8887						

- a. Dependent Variable: Body Mass Index
- b. Predictors: (Constant), Feel Safe in Neighborhood, Biological Sex

Linear Regression (cont.)

- Both biological sex & feeling safe in one's neighborhood both significantly predicted BMI
- The standardized for sex means its effect size was close to "small"
 - It is "medium" for feeling safe (q.v. ² criteria in this table)
- The positive effect for sex means those identifying as female (1s) tended to have higher BMIs than those identifying as male (0s)
- The negative value for feeling safe means those who felt safe (1s) tended to have lower BMIs than those who didn't (0s)

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confider	ice Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	30.205	.259		116.415	<.001	29.696	30.714
	Biological Sex	.325	.159	.022	2.036	.042	.012	.637
	Feel Safe in Neighborhood	-1.383	.258	057	-5.356	<.001	-1.890	877

a. Dependent Variable: Body Mass Index

Interpretting the Effects

• Writing these results in linear equation form:

$$\hat{BMI} = 30.205 + (0.325 \times \text{Sex}) + (-1.383 \times \text{Feeling Safe})$$

Coefficients

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confiden	ce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	30.205	.259		116.415	<.001	29.696	30.714
	Biological Sex	.325	.159	.022	2.036	.042	.012	.637
	Feel Safe in Neighborhood	-1.383	.258	057	-5.356	<.001	-1.890	877

a. Dependent Variable: Body Mass Index

Interpretting the Effects (cont.)

$$\hat{BMI} = 30.205 + (0.325 \times \text{Sex}) + (-1.383 \times \text{Feeling Safe})$$

- Since Bio_Sex was coded 0 = Male & 1 = Female
 - And Feel_Safe_in_Nghbrhd as 0 = No & 1 = Yes,
- We predict that the BMI
 - For a **male** (0)
 - Who does **not** feel safe (0)
 - Is 30.205:

$$\begin{split} \hat{\text{BMI}} &= 30.205 + (0.325 \times 0) + (-1.383 \times 0) \\ &= 30.205 + 0 + 0 \\ &= 30.205 \end{split}$$

Interpretting the Effects (cont.)

$$\hat{BMI} = 30.205 + (0.325 \times \text{Sex}) + (-1.383 \times \text{Feeling Safe})$$

- The predicted BMI for
 - A female (1)
 - Who does **not** feel safe (0)
 - Is 30.530:

$$\begin{split} \hat{\text{BMI}} &= 30.205 + (0.325 \times 1) + (-1.383 \times 0) \\ &= 30.205 + 0.325 + 0 \\ &= 30.530 \end{split}$$

Interpretting the Effects (cont.)

$$\hat{BMI} = 30.205 + (0.325 \times \text{Sex}) + (-1.383 \times \text{Feeling Safe})$$

- The predicted BMI for
 - A male (0)
 - Who **does** feel safe (1)
 - Is 29.147:

$$\begin{split} \hat{\text{BMI}} &= 30.205 + (0.325 \times 0) + (-1.383 \times 1) \\ &= 30.205 + 0 - 1.383 \\ &= 29.147 \end{split}$$

• Etc.

Further Considerations

Multicollinearity

- When two or more predictors share too much variance
 - I.e., are strongly correlated
- Two general sources:
 - 1. Structural: Caused by how the model was constructed
 - E.g., adding interaction terms
 - 1. Data: Caused by variables that are inherently correlated

Multicollinearity (cont.)

- Problems caused by multicollinearity:
 - Parameter estimates of multicollinear terms can be unstable
 - * And even reverse sign
 - Reduces the power of the whole model
 - * Because the parameter estimates are less precise

Multicollinearity (cont.)

- Multicollinearity doesn't typically affect the whole model's \mathbb{R}^2
 - Or the model's good-of-fit statistics
- It mostly impairs interpretation of individual predictors
- Can be tested with variance inflation factor (VIF)
 - VIF ranges from 1 to ∞
 - Where values >10 indicate problems

Multicollinearity (cont.)

- Addressing multicollinearity
 - Centering variables (subtracting the mean) can reduce structural multicollinearity (Iacobucci et al., 2016)
 - Remove one of the correlated variables
 - Only test/compare overall model fit
 - Use another analysis
 - * E.g., canonical correlations or principal component analysis

Multicollinearity (end)

- Multicollinearity is typically not a concern if the variables with high multicollinearity are:
 - Control variables
 - Intentional products of other variables
 - * E.g., interaction terms, raised to a power, etc.
 - Dummy variables

Independence of Cases

- When one case (participant, round of tests, etc.) is correlated with another case
- Can also produce unstable parameter estimates
 - Thus affecting significance tests
 - * Through both false positives (Type 1) & false negatives (Type 2)
- May also affect model goodness of fit
 - And not isolated to a few predictors

Independence of Cases (cont.)

- Addressing non-independence
 - Best is through research design
 - Can also model inter-dependence
 - * E.g., nesting cases
 - · As is done explicitly in multilevel (hierarchical) models

The Games

- Space Invaders
- Lunar Lander
- Asteroids
 - Doesn't work well on Firefox
- Tempest
- Star Wars
- Battlezone
- Elite