
ANOVA & Linear Model:

Summary

“If you’re going through hell, keep going.”
Winston Churchill
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Review of ANOVAs vs.
Linear Regression

ANOVA

• Tests effects of 
variables through 
“main effect” 
terms

• Then tests level 
differences with 
post hoc analyses

Linear Regression

• Tests effects of 
variables through 
dummy coding
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Review of ANOVAs vs.
Linear Regression (cont.)

ANOVA

• Uses overall 
tests as a 
safeguard 
against doing 
too many 
significance 
tests

Linear Regression

• Has no 
safeguard 
against 
conducting too 
many tests
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Review of ANOVAs vs.
Linear Regression (cont.)

ANOVA

• Used to test 
which variables 
are significant

Linear Regression
• Can be used to 

test which 
variables are 
significant

• But can also test 
overall model



  

Review of ANOVAs vs.
Linear Regression (cont.)

• In both ANOVA & linear regression:
○ Adding a variable to a model partials 

out its effect from the other terms in 
the model

○ But in ANOVAs, one doesn’t add a 
term just to partial it out

● Adding a variable to an ANOVA is 
done as an explicit test of that term



  

Review of ANOVAs vs.
Linear Regression (cont.)

• In both ANOVA & linear regression:
○ Adding a variable to a model partials 

out its effect from the other terms in 
the model

○ But in ANOVAs, one doesn’t add a 
term just to partial it out

● Adding a variable to an ANOVA is 
done as an explicit test of that term



  

Review of ANOVAs vs.
Linear Regression (cont.)

• In linear regression:
○ We have more flexibility

● Can test differences between 
variable levels right there

● Can tweak how the variables are 
tested

○ E.g., can test non-normal data
● Can also test “model fit”...



  

Model Fit

• “Model fit” is how well a given 
statistical model explains a given 
set of data
○ How well it “fits” the data
○ Misfit means there is a big difference 

between what the model predicts 
the data are like

● And what the data are actually like



  

Model Fit (cont.)

• Why focus on the overall model 
instead of individual variables?
○ Since predictors are often correlated 

themselves
● And even non-significant correlations—

and non-significant predictors—
can effect results

○ For theory! E.g., to find the best 
combination of predictors



  

Interpreting an ANOVA:
Variable Summary

Between-Subjects Factors

Value Label N

Gender 0 Male 92

1 Female 67

Spec_Ed 0 No Diagnosed 
Disability

79

1 Has Diagnosed 
Disability

80



  

Interpreting an ANOVA:
Source Table...



  

Tests of Between-Subjects Effects

Dependent Variable:   ELA_Grade  

Source Type III 
Sum of 

Squares

df Mean 
Square

F Sig. Partial 
Eta 

Squared

Noncent 
Para-
meter

Observd 
Powerb

Corrected 
Model

21.690a 3 7.230 12.49 .000 .195 37.479 1.000

Intercept 1146.48 1 1146.48 1981 .000 .927 1981.03 1.000

Gender 2.276 1 2.276 3.934 .049 .025 3.934 .504

Spec_Ed 13.229 1 13.229 22.86 .000 .129 22.858 .997

Gender * 
Spec_Ed

3.169 1 3.169 5.476 .021 .034 5.476 .643

Error 89.703 155 .579

Total 1265.81 159

Corrected 
Total

111.393 158

a. R Squared = .195 (Adjusted R Squared = .179)

b. Computed using alpha = .05



Multilevel Models



  

Capturing the Unknown

• Those cared for in the same 
hospital have similar experiences
○ Those cared for in the same unit 

within a hospital have similar 
experience

○ Even if we can’t measure completely 
why



  

Which People Make a 
Personality?

• Traditionally, studies of personality 
development compare “nature” vs. 
“nurture”

• E.g., Minesota Twin Studies
○ Mono- & dizygotic twins reared 

together & separately
○ Thus shared & unshared genes & 

environment



  

Which People Make a 
Personality? (cont.)

• Looking further at “nurture”
○ Home environment accounts for more 

variance than non-home
● E.g., children “nested” in the same 

family share variance in personality
● Knew this even before we knew the 

sources of this variance
● Whence, research on parenting styles

https://mctfr.psych.umn.edu/twinstudy/


  

Which People Make a 
Personality? (cont.)

• But even the home environment 
can be further sub-divided
○ Children have their own 

“microenvironment”
○ I.e., variance in personality can be 

further nested to effects within a 
given child

https://www.apa.org/act/resources/fact-sheets/parenting-styles


  

Which People Make a 
Personality? (cont.)

• E.g., birth order can matter
○ Those born first have different 

relationships with parents than later-born 
children

○ I.e., labeling each child by birth order may 
account for a significant  amount of the 
within-family variance

• In fact, unshared variance at home 
may matter more than shared variance



  

Levels of Variance

• So, research into effects of 
“nurturance” on personality
○ Has non-genetic variance

● Some of that shared within a home
○ Some of that shared within first-
borns

● Some of that in an other 
“microenvironmental” level

http://www.sulloway.org/Birth_Order(Salmon-Oxford-2007).pdf
https://www.npr.org/2010/11/18/131424595/siblings-share-genes-but-rarely-personalities
https://www.thegreatcoursesdaily.com/shared-environments-different-personalities/


  

Levels of Variance (cont.)

• So, any model of “nurturance” 
benefits from having multiple 
levels
○ And variance unique to that level

● Both shared and unshared variance
○ I.e., both explicitly measured
○ And from sources unknown, but 
common to that level



  

Capturing the Unknown:
Nesting Variance

• Statistical models often partial out 
variance into signal & noise
○ Outcome = Signal  + Noise
○ E.g.,:

●       Y =      X   + e
●       Y =   X1 + X2 + e



  

Capturing the Unknown:
Nesting Variance (cont.)

• Statistical models often partial out 
variance into signal & noise
○ Outcome = Signal  + Noise
○ E.g.,:

●       Y =      X   + e
●       Y =   X1 + X2 + e1 + e2



Multilevel Models

of Change

“If you change the way you look at things,
the things you look at change.”

Wayne Dyer



  

Examples of Longitudinal Studies

• Framingham Heart Study
(Dawler, Kannel, & Lyell, 1963)

• Health Behaviors of Nursing 
Students: A Longitudinal Study 
(Clement et al., 2002)



  

What Do These Studies All 
Share?

• They all:
○ Track change in outcomes over time
○ Test what predicts different types of 

changes
● E.g., different rates of change 

between groups

https://articles.viriya.net/longitudinal_studies_j_thoracic.pdf
https://articles.viriya.net/health_beh_nursing_stud.pdf


  

Questions about Change

1. How does the outcome change 
over time?

2. Can we predict differences in 
these changes?

• These two question are addressed 
through two, different pieces of our 
analyses



  

Questions about Change (cont.)

1. How does the outcome change over time?
○ Can be a descriptive question—not 

necessarily inferential
● Is change linear? Logarithmic?
● Does it always change the same way?

○ Addressed through looking at the pattern of 
the outcome within each participant

○ Level 1 analysis (Singer & Willet, 2003):
● Describe the shape / rate of the change



  

Questions about Change (cont.)

2. Can we predict differences in these changes?
○ An inferential question
○ Do groups differ in how they change?

● Do other predictors correlate with rates of change?
○ Addressed through looking at differences between 

participants
● From different groups, with different 

characteristics, etc.
○ Level 2 analysis (Singer & Willet, 2003):

● Can we predict the shape / rate of change



  

Ways to Test Longitudinal Data

• Compute a pre-post difference score
○ The compare groups’ difference scores

• Control for pretest score
○ Then compare groups’ posttest scores

(e.g., ANCOVA with pretest as covariate)
• Create a nominal factor for time

○ Then test for mean differences between 
levels of time
(e.g., repeated measures ANOVA)



  

Repeated Measures ANOVA



  

An Alternative Method



  

An Alternative Method (cont.)



  

An Alternative Method (cont.)

• Alternative method (Singer & Willet, 
2003):
○ Using the time-varying scores,

● Compute intercept & slope for each 
participant

● Then include terms for the intercept & 
slope in the model

○ Also parse our error into nested levels



  

An Alternative Method: MLM

• We therefore “nest” time-changing 
data within each participant
○ Just as we would nest, e.g., patients in 

a hospital unit
● And hospitals in city, city in state, etc.

• Called multilevel models of change 
(MLMs)

● Also called hierarchical linear models



  

An Alternative Method (cont.)

• Including slope in model:

○ Allows time to be treated more flexibly
○ Models within-participant variance 

more accurately
○ Uses information in data set more 

efficiently
● Requiring less data than other methods



  

An Alternative Method (cont.)

• Including intercept in model:

○ Can control for effect of initial values
● (I.e., remove its effect from other 

comparisons)
○ Or can test if initial values affect 

later development
● (E.g., floor or ceiling effects)



  

Prerequisites to Analyzing 
Change Through MLMs

1. Longitudinal data

2. Three or more “waves” of data

3. A time-varying outcome

4. A sensible metric for time



  

Prerequisites to Analyzing 
Change Through MLMs (cont.)

1. Longitudinal data
○ Measuring the same case over time

● i.e., not cross-sectional
○ In which we measure different cases 

that are at different points of 
development



  

Prerequisites to Analyzing 
Change Through MLMs (cont.)

2. Three or more “waves” of data
○ 2 waves cannot:

● Determine shape of change
● Or how much is due to error / chance

○ More waves produce more precise 
measures

● And reduces measurement error



  

Prerequisites to Analyzing 
Change Through MLMs (cont.)

3. A time-varying outcome
○ That remains valid & reliable at 

different times
○ MLMs need continuous data



  

Prerequisites to Analyzing 
Change Through MLMs (cont.)

4. A sensible & precise metric for time
○ Sensible

● Useful for the decisions to make / 
research questions to answer

● Appropriate spacing of measurement
○ Precise

● Better decisions come with more 
information
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