ANOVA & Linear Model: Summary

"If you're going through hell, keep going."

Winston Churchill

ANOVA

- Tests effects of variables through "main effect" terms
- Then tests level differences with post hoc analyses

Linear Regression

 Tests effects of variables through dummy coding

ANOVA

 Uses overall tests as a safeguard against doing too many significance tests

Linear Regression

 Has no safeguard against conducting too many tests

ANOVA

Used to test
 which variables
 are significant

Linear Regression

- Can be used to test which variables are significant
- But can also test overall model

- In both ANOVA & linear regression:
 - Adding a variable to a model partials out its effect from the other terms in the model
 - But in ANOVAs, one doesn't add a term just to partial it out
 - Adding a variable to an ANOVA is done as an explicit test of that term

- In both ANOVA & linear regression:
 - Adding a variable to a model partials out its effect from the other terms in the model
 - But in ANOVAs, one doesn't add a term just to partial it out
 - Adding a variable to an ANOVA is done as an explicit test of that term

- In linear regression:
 - We have more flexibility
 - Can test differences between variable levels right there
 - Can tweak how the variables are tested
 - E.g., can test non-normal data
 - Can also test "model fit"...

Model Fit

- "Model fit" is how well a given statistical model explains a given set of data
 - How well it "fits" the data
 - Misfit means there is a big difference between what the model predicts the data are like
 - And what the data are actually like

Model Fit (cont.)

- Why focus on the overall model instead of individual variables?
 - Since predictors are often correlated themselves
 - And even non-significant correlations and non-significant predictors can effect results
 - For theory! E.g., to find the best combination of predictors

Interpreting an ANOVA: Variable Summary

Between-Subjects Factors									
		Value Label	N						
Gender	0	Male	92						
	1	Female	67						
Spec_Ed	0	No Diagnosed Disability	79						
	1	Has Diagnosed Disability	80						

Interpreting an ANOVA: Source Table...

Tests of Between-Subjects Effects

Dependent Variable: ELA_Grade

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent Para- meter	Observd Power ^b
Corrected Model	21.690ª	3	7.230	12.49	.000	.195	37.479	1.000
Intercept	1146.48	1	1146.48	1981	.000	.927	1981.03	1.000
Gender	2.276	1	2.276	3.934	.049	.025	3.934	.504
Spec_Ed	13.229	1	13.229	22.86	.000	.129	22.858	.997
Gender * Spec_Ed	3.169	1	3.169	5.476	.021	.034	5.476	.643
Error	89.703	155	.579					
Total	1265.81	159						
Corrected Total	111.393	158						

a. R Squared = .195 (Adjusted R Squared = .179)

b. Computed using alpha = .05

Multilevel Models

Capturing the Unknown

- Those cared for in the same hospital have similar experiences
 - Those cared for in the same unit within a hospital have similar experience
 - Even if we can't measure completely why

Which People Make a Personality?

- Traditionally, studies of personality development compare "nature" vs. "nurture"
- E.g., Minesota Twin Studies
 - Mono-& dizygotic twins reared together & separately
 - Thus shared & unshared genes & environment

Which People Make a Personality? (cont.)

- · Looking further at "nurture"
 - Home environment accounts for more variance than non-home
 - E.g., children "nested" in the same family share variance in personality
 - Knew this even before we knew the sources of this variance
 - Whence, research on parenting styles

Which People Make a Personality? (cont.)

- But even the home environment can be further sub-divided
 - Children have their own "microenvironment"
 - I.e., variance in personality can be further nested to effects within a given child

Which People Make a Personality? (cont.)

- E.g., birth order can matter
 - Those born first have different relationships with parents than later-born children
 - I.e., labeling each child by birth order may account for a significant amount of the within-family variance
- In fact, unshared variance at home may matter more than shared variance

Levels of Variance

- So, research into effects of "nurturance" on personality
 - Has non-genetic variance
 - Some of that shared within a home
 - Some of that shared within firstborns
 - Some of that in an other "microenvironmental" level

Levels of Variance (cont.)

- So, any model of "nurturance" benefits from having multiple levels
 - And variance unique to that level
 - Both shared and unshared variance
 - ol.e., both explicitly measured
 - And from sources unknown, but common to that level

Capturing the Unknown: Nesting Variance

- Statistical models often partial out variance into signal & noise
 - Outcome = Signal + Noise
 - ∘ *E.g.,*:

 - Y = X + e• $Y = X_1 + X_2 + e$

Capturing the Unknown: Nesting Variance (cont.)

- Statistical models often partial out variance into signal & noise
 - Outcome = Signal + Noise
 - ∘ *E.g.,*:

 - Y = X + e• $Y = X_1 + X_2 + e_1 + e_2$

Multilevel Models of Change

"If you change the way you look at things, the things you look at change."

Wayne Dyer

Examples of Longitudinal Studies

- Framingham Heart Study
 (Dawler, Kannel, & Lyell, 1963)
- Health Behaviors of Nursing Students: A Longitudinal Study (Clement et al., 2002)

What Do These Studies All Share?

- They all:
 - Track change in outcomes over time
 - Test what predicts different types of changes
 - E.g., different rates of change between groups

Questions about Change

- 1. How does the outcome change over time?
- 2. Can we predict differences in these changes?
- These two question are addressed through two, different pieces of our analyses

Questions about Change (cont.)

- 1. How does the outcome change over time?
 - Can be a descriptive question—not necessarily inferential
 - Is change linear? Logarithmic?
 - Does it always change the same way?
 - Addressed through looking at the pattern of the outcome within each participant
 - Level 1 analysis (Singer & Willet, 2003):
 - Describe the shape / rate of the change

Questions about Change (cont.)

- 2. Can we predict differences in these changes?
 - An inferential question
 - Do groups differ in how they change?
 - Do other predictors correlate with rates of change?
 - Addressed through looking at differences between participants
 - From different groups, with different characteristics, etc.
 - Level 2 analysis (Singer & Willet, 2003):
 - Can we predict the shape / rate of change

Ways to Test Longitudinal Data

- Compute a pre-post difference score
 - The compare groups' difference scores
- Control for pretest score
 - Then compare groups' posttest scores (e.g., ANCOVA with pretest as covariate)
- Create a nominal factor for time
 - Then test for mean differences between levels of time (e.g., repeated measures ANOVA)

Repeated Measures ANOVA

An Alternative Method

An Alternative Method (cont.)

An Alternative Method (cont.)

- Alternative method (Singer & Willet, 2003):
 - Using the time-varying scores,
 - Compute intercept & slope for each participant
 - Then include terms for the intercept & slope in the model
 - Also parse our error into nested levels

An Alternative Method: MLM

- We therefore "nest" time-changing data within each participant
 - Just as we would nest, e.g., patients in a hospital unit
 - And hospitals in city, city in state, etc.
- Called multilevel models of change (MLMs)
 - Also called hierarchical linear models

An Alternative Method (cont.)

- · Including slope in model:
 - Allows time to be treated more flexibly
 - Models within-participant variance more accurately
 - Uses information in data set more efficiently
 - Requiring less data than other methods

An Alternative Method (cont.)

- · Including intercept in model:
 - Can control for effect of initial values
 - (l.e., remove its effect from other comparisons)
 - Or can test if initial values affect later development
 - (E.g., floor or ceiling effects)

- 1. Longitudinal data
- 2. Three or more "waves" of data
- 3. A time-varying outcome
- 4. A sensible metric for time

1. Longitudinal data

- Measuring the same case over time
 - i.e., not cross-sectional
- In which we measure different cases that are at different points of development

- 2. Three or more "waves" of data
 - 2 waves cannot:
 - Determine shape of change
 - Or how much is due to error / chance
 - More waves produce more precise measures
 - And reduces measurement error

- 3. A time-varying outcome
 - That remains valid & reliable at different times
 - MLMs need continuous data

4. A sensible & precise metric for time

- Sensible
 - Useful for the decisions to make / research questions to answer
 - Appropriate spacing of measurement
- Precise
 - Better decisions come with more information

