measures a population stat…
that is different than the “null” value.
(“Null” usually being “not different than zero,” “no
effect,”
“no difference,” “no information,” etc.)
\[Y = b_{0} + b_{1}X_{1} + e\]
\[Y = b_{0} + b_{1}X_{1} + b_{2}X_{2} + e\]
\[Y = b_{0} + b_{1}X_{1} + b_{2}X_{2} + e_{1} + e_{2}\]
Sources of Variance
\[Y = b_{0} + b_{1}X_{1} + ( b_{ZIP}X_{ZIP} + b_{Salary}X_{Salary} ) + e \]
\[R^2_{FirstModel} = b_{0} + b_{1}X_{1} + e \]
\[R^2_{Second Model} = b_{0} + b_{1}X_{1} + ( b_{ZIP}X_{ZIP} + b_{Salary}X_{Salary} ) + e \]
\[\text{Difference} = R^2_{FirstModel} - R^2_{Second Model}\]
Non-Ostensible Variables
\[\text{Difference in Model Fit} =\]
\[ AIC_{\text{Model without Family}} - AIC_{\text{Model with Family}}\]
\[\text{Diff. in Model Fit} = 2010 - 2000 = 10\]
\(b_{1}X_{1}\)
\(b_{1}X_{1} + ( b_{ZIP}X_{ZIP} + b_{Salary}X_{Salary} )\)