References

Abelson, R. P. (1995). Statistics as Principled Argument. Lawrence Erlbaum Associates Publishers. https://articles.viriya.net/statistics_as_principled_argument.pdf
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2011). Introduction to Meta-Analysis (1. Aufl., p. xxix). Wiley. https://doi.org/10.1002/9780470743386
Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231. https://articles.viriya.net/statistical_modeling_the_two_cultures.pdf
Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics - Simulation and Computation, 39(4), 860–864. https://doi.org/10.1080/03610911003650383
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Davis, L. L., Broome, M. E., & Cox, R. P. (2002). Maximizing retention in community-based clinical trials. Journal of Nursing Scholarship, 34(1), 47–53. https://doi.org/10.1111/j.1547-5069.2002.00047.x
Gustavson, K., von Soest, T., Karevold, E., & Røysamb, E. (2012). Attrition and generalizability in longitudinal studies: Findings from a 15-year population-based study and a Monte Carlo simulation study. BMC Public Health, 12, 918. https://doi.org/10.1186/1471-2458-12-918
Kao, L. S., & Green, C. E. (2008). Analysis of variance: Is there a difference in means and what does it mean? Journal of Surgical Research, 144(1), 158–170. https://doi.org/10.1016/j.jss.2007.02.053
Khamis, H. (2008). Measures of association: How to choose? Journal of Diagnostic Medical Sonography, 24(3), 155–162. https://doi.org/10.1177/8756479308317006
Kraft, M. A. (2020). Interpreting effect sizes of education interventions. Educational Researcher, 49(4), 241–253. https://doi.org/10.3102/0013189X20912798
Monsalves, M. J., Bangdiwala, A. S., Thabane, A., & Bangdiwala, S. I. (2020). LEVEL (Logical Explanations & Visualizations of Estimates in Linear mixed models): Recommendations for reporting multilevel data and analyses. BMC Medical Research Methodology, 20, 1–9. https://doi.org/10.1186/s12874-019-0876-8
Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way ANOVA. Behaviormetrika, 40(2), 129–147. https://doi.org/10.2333/bhmk.40.129
Polit, D. F., & Beck, C. E., Cheryl T. (2017). Nursing Research: Generating and Assessing Evidence for Nursing Practice (Tenth). Wolters Kluwer.
Raper, S. (2020). Leo Breiman’s "two cultures". Significance, 17, 34–37. https://doi.org/10.1111/j.1740-9713.2020.01357.x
Teague, S., Youssef, G. J., Macdonald, J. A., Sciberras, E., Shatte, A., Fuller-Tyszkiewicz, M., Greenwood, C., McIntosh, J., Olsson, C. A., & Hutchinson, D. (2018). Retention strategies in longitudinal cohort studies: A systematic review and meta-analysis. BMC Medical Research Methodology, 18(1), 151–151. https://doi.org/10.1186/s12874-018-0586-7
Visalakshi, J., & Jeyaseelan, L. (2014). Confidence interval for skewed distribution in outcome of change or difference between methods. Clinical Epidemiology and Global Health, 2(3), 117–120. https://doi.org/10.1016/j.cegh.2013.07.006
Weisburd, D., & Britt, C. (2007). Measures of association for nominal and ordinal variables (pp. 335–380). Springer US. https://doi.org/10.1007/978-0-387-34113-2_13
Yu, H., Jiang, S., & Land, K. C. (2015). Multicollinearity in hierarchical linear models. Social Science Research, 53, 118–136. https://doi.org/10.1016/j.ssresearch.2015.04.008
Yuan, K.-H., & Maxwell, S. E. (2005). On the post hoc power in testing mean differences. Journal of Educational and Behavioral Statistics, 30(2), 141–167. https://articles.viriya.net/on_the_post_hoc_power_in_testing_mean_differences.pdf
Zhang, Y., Hedo, R., Rivera, A., Rull, R., Richardson, S., & Tu, X. M. (2019). Post hoc power analysis: Is it an informative and meaningful analysis? General Psychiatry, 32(4), e100069–e100069. https://doi.org/10.1136/gpsych-2019-100069