References
Abelson, R. P. (1995). Statistics as Principled
Argument. Lawrence Erlbaum Associates
Publishers. https://articles.viriya.net/statistics_as_principled_argument.pdf
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R.
(2011). Introduction to Meta-Analysis (1. Aufl.,
p. xxix). Wiley. https://doi.org/10.1002/9780470743386
Breiman, L. (2001). Statistical modeling: The two cultures.
Statistical Science, 16(3), 199–231. https://articles.viriya.net/statistical_modeling_the_two_cultures.pdf
Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio?
Interpreting the magnitudes of odds ratios in
epidemiological studies. Communications in Statistics - Simulation
and Computation, 39(4), 860–864. https://doi.org/10.1080/03610911003650383
Cohen, J. (1988). Statistical power analysis for the behavioral
sciences (2nd ed.). Lawrence Erlbaum Associates.
Davis, L. L., Broome, M. E., & Cox, R. P. (2002). Maximizing
retention in community-based clinical trials. Journal of Nursing
Scholarship, 34(1), 47–53. https://doi.org/10.1111/j.1547-5069.2002.00047.x
Gustavson, K., von Soest, T., Karevold, E., & Røysamb, E. (2012).
Attrition and generalizability in longitudinal studies: Findings from a
15-year population-based study and a Monte Carlo simulation
study. BMC Public Health, 12, 918. https://doi.org/10.1186/1471-2458-12-918
Kao, L. S., & Green, C. E. (2008). Analysis of variance:
Is there a difference in means and what does it mean?
Journal of Surgical Research, 144(1), 158–170. https://doi.org/10.1016/j.jss.2007.02.053
Khamis, H. (2008). Measures of association: How to choose?
Journal of Diagnostic Medical Sonography, 24(3),
155–162. https://doi.org/10.1177/8756479308317006
Kraft, M. A. (2020). Interpreting effect sizes of education
interventions. Educational Researcher, 49(4), 241–253.
https://doi.org/10.3102/0013189X20912798
Monsalves, M. J., Bangdiwala, A. S., Thabane, A., & Bangdiwala, S.
I. (2020). LEVEL (Logical Explanations &
Visualizations of Estimates in
Linear mixed models): Recommendations for reporting
multilevel data and analyses. BMC Medical Research Methodology,
20, 1–9. https://doi.org/10.1186/s12874-019-0876-8
Okada, K. (2013). Is omega squared less biased? A
comparison of three major effect size indices in one-way
ANOVA. Behaviormetrika, 40(2), 129–147.
https://doi.org/10.2333/bhmk.40.129
Polit, D. F., & Beck, C. E., Cheryl T. (2017). Nursing
Research: Generating and Assessing
Evidence for Nursing Practice (Tenth).
Wolters Kluwer.
Raper, S. (2020). Leo Breiman’s "two cultures".
Significance, 17, 34–37. https://doi.org/10.1111/j.1740-9713.2020.01357.x
Teague, S., Youssef, G. J., Macdonald, J. A., Sciberras, E., Shatte, A.,
Fuller-Tyszkiewicz, M., Greenwood, C., McIntosh, J., Olsson, C. A.,
& Hutchinson, D. (2018). Retention strategies in longitudinal cohort
studies: A systematic review and meta-analysis. BMC Medical Research
Methodology, 18(1), 151–151. https://doi.org/10.1186/s12874-018-0586-7
Visalakshi, J., & Jeyaseelan, L. (2014). Confidence interval for
skewed distribution in outcome of change or difference between methods.
Clinical Epidemiology and Global Health, 2(3),
117–120. https://doi.org/10.1016/j.cegh.2013.07.006
Weisburd, D., & Britt, C. (2007). Measures of association for
nominal and ordinal variables (pp. 335–380). Springer
US. https://doi.org/10.1007/978-0-387-34113-2_13
Yu, H., Jiang, S., & Land, K. C. (2015). Multicollinearity in
hierarchical linear models. Social Science Research,
53, 118–136. https://doi.org/10.1016/j.ssresearch.2015.04.008
Yuan, K.-H., & Maxwell, S. E. (2005). On the post hoc power in
testing mean differences. Journal of Educational and Behavioral
Statistics, 30(2), 141–167. https://articles.viriya.net/on_the_post_hoc_power_in_testing_mean_differences.pdf
Zhang, Y., Hedo, R., Rivera, A., Rull, R., Richardson, S., & Tu, X.
M. (2019). Post hoc power analysis: Is it an informative
and meaningful analysis? General Psychiatry, 32(4),
e100069–e100069. https://doi.org/10.1136/gpsych-2019-100069